The cT Programming Language

Version 3.0
Created by David Andersen, Bruce Sherwood, Judith Sherwood, and Kevin Whitley
Center for Innovation in Learning
Carnegie Mellon University

Pittsburgh

http://cil.andrew.cmu.edu/ct.html

Contents

1. THE CT PROGRAMMING LANGUAGE ... e 4
(o3 I\ =Y o U o4 o o 1= 11
Additional LangUage AS Pl S, ...ttt ettt ettt ettt e e e e 17
2. GRAPHICS & T EXT o e eaeans 32
Basic Graphics & TeXt CoOmMMandSouiu ittt it e et ettt 34
1Tt ol] T o T £ L= TS o == o 34
Displaying Text and Variables....... ..o e 39
LINES, CIrCIES, BOXES, ELC. vttt e e 52
Mode, Pattern, Thick, CUrsor, & Clipuiiirii i e e e e et 60
Inhibit and AlIOW iN GraphiCso e e e e e 65
L0] o) 71
0= Yo == 88
N 2 1= e 1 0 98
MaKIiNg @ GrapN ..o e e 102
Relative Graphics ComMmMands.ottt it e et e ettt 112
3. VIDEO & SOUND ... e e aaee s 117
AV Lo =T o T o T 41 o = T 117
4. MOUSE & KEYSET INTERACTIONS ...t 124
Mouse, Single Key, & Timed PaUSe.t e 125
PUI-OWN M ENUS .. et e e e e e e e e et e e e e e e 136
Buttons, Dialog Boxes, Sliders, & Edit Panels....... ... 142
SCrolling TeXt Panels ... e e 149
Word & NUMDBDEI INPUL ... e e e e e e e e e 158
BasiC JUAQING COMMANGS.ttt et et e e e e ettt ettt e a e e et et et et e eaenes 159
Modifying Judging Defaults. e 169
[[a] a1 oT1ar=TaTo BN {[o) VA1 ¢ I 1¥ 1o [o 1 oo AR TPV 177
Specialized Judging COMMANGSuuiui e e ettt et e e e aanaes 181

. CALCULATIONS. e 187

DefiniNg Variables. ... e 190
Basic Calculational Operations i e e 200
F N =V @ o 1= - 1 o] 1 208
IF, CASE, and LOO P ...t ettt et e et 215
RaNdOmM Variables. o 221
6. CONNECTING UNITS & PROGRAMS ... 223
Units -- Program SUDAIVISIONS. e e e e e 223
Moving between Main UNits.o e e e 237
ConNNeCtioNS t0 Other PrOgramst e e e e e 241
7. CHARACTER STRINGS .. e e 246
BasiC Marker Operations.t e e e 248
MarKer COMMANAS ...ttt ettt e ettt e e e e e e e e e e 259
o =T G U T 0 264
Some EXamples With MarKers. e 277
8. FILES, SERIAL PORT, & SOCKETS ...t 285

File Handling CoOmMmMands.o.ouuiii et et 289
SOCKET COMMaANUS. .ottt et e ettt e e e ettt e e e e e 311
9. SYSTEM VARIABLES ... e 318
System Variables for Graphics and MOUSE. ..ottt e et 321
Other System Variableso e e e e e 329
L 338

INTRODUCTION
1. The cT Programming Language

Purpose of cT

This is a print version of the on-line help for cT 3.0 (August 1999). See the on-line help dfindmv menu
for updated information, and a history of previous versions. Also see http://cil.andrew.cmu.edu/ct.html.

The cT programming language is an algorithmic languége C, Pascal, Fortrarand Basic, but greatly
enhanced bynultimedia capabilities, includingasy-to-usesupport for color graphics, mouse interactions, and
even movies in QuickTime or Video for Windows format.

The cT programminganguageoffers easy

programmability of multimedia programs, with
portability across Macintosh, Windows, and Unix.

The cT programmingnvironment offers

on-line help with executable program examples,

agraphics editor for automatic generation of graphics commands,
incremental compiling to provide rapid turnaround, and
detailederror diagnosis.

When is cT the right tool?

There aremany excellent applications available foeating picturesnd diagrams,andfor making multimedia
presentations, without having to write your own computer program.

However, it issometimes thecasethat doing something really neand different ishard to dowith these
nonprogramming applicationfecausehey often don'tprovide enough control of interactionand enough
calculational capability to do whgou really want to do.

cT offers the open-enddtexibility andpower associatedith programming languagdsut eliminates many of
the difficulties and complexities usually associated with using a programming language.

Credits

cT has been developed in the Center for Innovation in Learning at Carnegie Mellon University in Pittsburgh by
David Andersen, Bruce Sherwood, Judith Sherwaod,Kevin Whitley. cT is atrademark ofCarnegie Mellon
University.

Special thanks to: Andrew Appel, Bill Arms, Steven Bend, Ruth Chabay, Preston @odgyan Dam, Ken
Friend, Fred Hansen, Stacie Hibino, Chris Koenigsberg, Peter Kornelisseldefer, Jill Larkin, Michael

LoBue, David MaddenGreggMalkary, Ben McCurtain, Jim Morris, TomNeuendorffer,Tom Peters, Carol
Schetftic, and David Trowbridge.

License information
cT is a copyright © Carnegie Mellon University, 1989, 1992, 1995, 1999.
Permission toreproduce andise cT for internal use igranted providedhe copyrightand "No Warranty"

statementsare includedvith all reproductions. cT may also bedistributedwithout charge providedhat the
copyright and "No Warranty" statements are included in all redistributions.

NO WARRANTY. cT IS FURNISHED ON AN "AS IS" BASIS. CARNEGIE MELLONJUNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY OF RESULTS OR RESULTSOBTAINED FROM USE OF cT.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANYKIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK OR COPYRIGHT INFRINGEMENT.

An Example Program

Given below is a short program written in cT. This program illustrates graphicstesthanimation, and
mouse interactions.

Copythe example into thstart of the program windowafter the $syntaxlevel line).
Executethe program by choosing "Run from beginning" on the Opti@mu.

Click the button; draw in the box; use the pull-down menu to clear the box.
Change the size of thevindow and see how the program starts all oagrin.

(On a Macintosh, drag the lower-right corner of the window; no drag box is shown.)
To stop, choose "Quit running” from the Option menu, which deetsquit cT.

After running the progranteadthrough the program carefully, one line atirae, to seehow the effects are
achieved.You may want to look umetailedinformation onindividual commandsTry changing theprogram
and running it agairBe sure to read the next topic, "Further Discussion”.

Example program to be copied, down to "End of exampleprogram":

unit cTexample
* (An asterisk * at the start of a line introduces a comment.)
* cT programs are made up of "units”, like subroutines in other languages.
* Declare a "button"-type variable named "animate" to be used by unit cTexample
* in the creation of a "button", an object to click:
button: animate 3 declare a "button" variablete initial TAB
$$ a "$$" introduces a comment at end of a line

*-- Specify the font to be used to output text:

font zsans,15 $$ choose sans-serif font, 15 pixels high
* The TAB key isrequired to separate "commands" (such as "font") from

* the "tag" (the arguments for that command, such as "zsans,15").

*-- Display text that is red, bold, and italic; upper-left corner is location 0,0:

color zred $choose color palette slot number "zred"

*-- Names beginning with "z" such as "zred" are pre-defined system names.

at 10,20 $3 1@ixels to right, 20 pixels down from upper-left corner
write Look! 3 displayLook! at location 10,20

*-- Display a solid blue rectangle:

color zblue $&hoose color palette slot number "zblue"

* Coordinates of two opposite corners of the rectangle, listed as x1,y1; x2,y2:

fill 70,12;115,40 $%ill a rectangle (in blue)

*-- Erase a disk inside the blue rectangle, making a white hole (you might
* rerun the program to see this white hole in the blue rectangle):
mode erase $$tart erasing

INTRODUCTION

at 92,26 $&entered at location 92,26
disk 9 $draw solid circular disk with radius 9
mode write $$stop erasing; reset to normal displaying

*-- Display a thick "vector" (a line with an arrowhead at the end):

color zblack $%hoose black color

thick 3 3 lines will be 3 pixels thick

* Give starting and ending locations of "vector", with arrowhead at end:
vector 125,26;170,26 $thick "vector” (line with arrowhead)
thick 3 reset to default 1-pixel thickness

*-- Display a solid red oval, specified by a bounding rectangle:

color zred $$choose color palette slot number "zred"

* Give corners of an invisible rectangle that bounds the oval:

disk 180,15;235,37 $8ed solid (oval) disk bounded by this rectangle
*-- Connect three points to draw two straight black lines:

color zblack $dblack lines

* Note semicolons separating the three sets of x-y coordinate pairs:

draw 225,7; 240,26; 225,45 $$ draw two lines

*-- Display window size near the lower-right corner of the window,
* by writing text with numbers, and displaying a vector:

* System variablegxmax, zymax give the window size, and

* we choose a location 90 to the left and 25 up from the

* lower-right corner of the window:

at zxmax-90,zymax-25 3 near lower-right corner
*

* |n the -write- statement below, note special "embed" symbols <| and |>;
* an "embedded" -show- command displays a numerical value.
The effect is to display a left parenthesis, the value of zxmax,
a comma, the value of zymax, and a right parenthesis:

write (<|show,zxmax|>,<|show,zymax|>)

*

*
*

* System variablegwherex zwherey give current writing location;

* in this case, at the location on the screen of the end of the text displayed
* by the previous -write- statement:

vector zwherex,zwherey+8; zxmax,zymax; 10 $$ 10-pixel arrowhead

*-- Display "rich" text (that is, text with styles such as bold, italic,
* subscript, or superscript, applied with the "Style" menu):

at 10,60 $$ position for writing at 10,60
write Text with styles-- HoO, x3.

at 10,90 3 position for writing at 10,90
write Click this button:

*-- Create a "button" to click:

* The tag (the arguments after the TAB) lists the button variable (animate),
* two opposite corners of the rectangular button,

* the unit (MoveBall, found below) to be done when you click the button,
* and the text ("Animation") to appear in the button:

button animate; 10,105;100,125; MoveBall; "Animation”

at 10,140 $$ position for writing at 10,140
write Click and drag in the box below.
Use "Special" menu to clear.

*-- Create a pull-down menu item:

* The tag lists the name (Special) that will appear in the menu bar,

* the item (Clear Drawing Area) to appear on the pull-down menu,

* and the unit (ClearSketch) to be done when you choose that menu item:
menu Special; Clear Drawing Area: ClearSketch

*-- Provide a sketch pad to draw on with the mouse:

* The following -do- command calls the subroutine (unit) named Sketch,

* passing to the subroutine the values of four arguments needed by Sketch,
* a unit found near the end of the program. The four arguments are the

* coordinates of two corners of the box to draw in:

do Sketch(10, 170, zxmax-10, zymax-30)

kkkkkhkkkkkkkkkx

unit MoveBall
* This subroutine unit is executed when you click the "Animation" button.
* Declare variables to be used by this unit:

integer: xx, yy $$ integer variables for ball location
integer: BALL=68 $$constant -- will display icon no. 68
integer: STEP=3 3 constant -- step size of animation
integer: X0=130, Y0=110 $$ constants -- initial location of ball
float: time 3 floating-point variable for keeping time

* An icon file contains a set of small images; "zicons" is a set included with cT:

icons zicons $$ choose icon file "zicons" (in which icon no. 68 is a ball)
color zblue
* A —calc— statement assigns values to variables; ":=" means "assign value".
* In successive assignment statements, you need not repeat the command "calc":
calc time := zclock 3 get current timedlock) in seconds

xx := X0 $$ assign xx and yy to initial location

yy :=YO0

* |terative loop, with xx assigned values from 130 to (zxmax+10) in steps of 3:
loop xx := X0, zxmax+10, STEP $$ go beyond zxmax (outside window)
* Note the required TAB indenting inside this loop.

* Move icon no. 68 (BALL) from old location to new location:

* The tag specifies that we're moving "icons" (from "zicons"),

* XX, yy is the old location of the ball,

* xx+STEP,yy := YO+15sin(xx/20) is the new location of the ball,
* and BALL is the number (68) of the icon to be moved:

move icons; xX, yy; Xxx+STEP,yy := Y0+15sin(xx/20); BALL

* Wait 0.02 seconds before making another move, to make the
* animation run about the same speed on fast and slow computers.
* Loop while elapsed time (zclock-time) is less than 0.02 sec:

INTRODUCTION

endloop

color

loop (zclock-time) < 0.02 3 loop while this is TRUE
* Do nothing in this loop; just wait for the right time.

endloop

calc time := zclock 3 reset to current time

zblack $Feset to black after using blue for the ball

kkkkkhkkkkkkkkkx

unit

Sketch(x1, y1, x2, y2) $$ subroutine for drawing

* The 4 arguments give the corners of a box within which to draw with the mouse

box
calc

loop

integer: x1, y1, x2, y2 $8eclare arguments are integers

integer: drawcolor 3 declare another integer variable
x1, y1; X2, y2 $&raw bounding box
drawcolor := zred $8rst drawing color will be red

3 unconditional loop; loop forever

pause keys=touch $8ait for mouse click
* System variablegtouchx, ztouchy give location of the mouse click:
at ztouchx,ztouchy 3 start drawing at mouse location

* The -clip- command restricts drawing to stay inside a box:

clip x1+1, y1+1; x2-1, y2-1

thick 2 3 sketch with lines 2 pixels thick
color drawcolor $$choose color for sketching

loop 3 nested unconditional inner loop

* Wait for a mouse "move" event, or a mouse "up" event
* (release of the mouse button), for left mouse button

* (a single-button mouse has a "left" button):

pause keys=touch(left: move,up) $$ "move" or "up"

* Starting with ";" means draw from current location:
draw ;ztouchx,ztouchy $$ draw to mouse location

* If mouse button comes up, get out of the inner loop.
* The system variablekey contains a numerical code
* representing the most recent event, ak(eft: up)

* is the numerical code for a mouse "up" event:
outloop zkey = zk(left: up)

endloop

clip 3 blank-tag -clip- means "don't clip anymore"

thick $3 reset to standard 1-pixel thickness for lines

calc drawcolor := drawcolor+1 $$ increment palette slot

* In the following expression, "=" means "equality test", in contrast

* to ":=", which means "assign a value to a variable".

if drawcolor =8 $$ start over if reached color slot no. 8
calc drawcolor := zred $$ reset to slot no. "zred"

endif

* Display a message in the current color, overwriting old message:

at x1,y2+2 $$ just below left corner of box

write You can draw again!
endloop
*kkkkkhkkkkkhkkkkkk
unit ClearSketch $$ subroutine driven by menu selection
erase 11,171; zxmax-11,zymax-31 $$ erase inside of box

* End of example program.

Further Discussion

Execution options: To execute an arbitrarynit, click the mousesomewhere inthe unit and choose
"Execute currentinit" from the Option menu. Or use "Select unit"sjgecify whichunit to start from. Try
executing unit "MoveBall" in the example program to see what happens.

The differencebetween"Run" and "Execute" isthat if you "Execute", cT automatically quits running the
program when there is nothing left to do, which is often convenient. If you "Run”, you have to explicitly "Quit
running"”, or click in the editing window to stop execution.

You cannot run oexecute ssubroutine unit that has arguments such as "Sketch(x1, y1, x2,bg2guse in
that case cT doesn't know what values to use for these arguments.

Graphics editing: Be sure to study the topl&Graphics Editing”, which explains hoywou can get cT to
generate or modify program statemegraphically, rather than having to type the statements yourself.

Graphics coordinates: The standard'absolute"coordinateorigin is at theupper-left corner ofhe window,
with X running to the right and y running down, so that 200,50 is 200 pixels to theanig8Opixels down
from the origin. Youcan also set up your owmoordinatesystems using "graphing" drelative" graphics
commands. You can read about these features by clicking a topic in the "See Also" list below.

What next? You now know enough to get started writing your own programs. At some point you staolild
through the next few topics:

The topic "cT Menu Options" explains the function of the various cT menu options.

The topic"Additional Language Aspects” provides overviewsvafious general aspects dhe cT language,
including a section oriDifferencesfrom Other Languages" of particular interesydfu have writtenprograms
before.

The topic "Calculatiorintroduction” listed belowgives anoverview that is very important ifyou have not
written computer programs before, and it can usefully be skimmed®riencegpprogrammers to sethe basic
syntax of cT numerical calculations.

Sample programs:Included with cT are manyedium-andlarge-sizeprograms that yowanstudy, use, or
modify. See "Sample Programs" for descriptions of these programs. The pexganse.tcontains a set of
exercises tdhelp youlearnthe basic concepts of programming in c¢T. To wuwikh this program,choose
"Open" on the File menu.

SeeAlso:
Graphics Editing (p. 10)
Making a Graph (p. 102)
Relative Graphics Commands (p. 321)
cT Menu Options (p. 12)
Additional Language Aspects (p. 17)

INTRODUCTION

Differences from Other Languages (p. 17)
Calculation Introduction (p. 187)
Sample Programs (p. 28)

Graphics Editing
cT lets you generate graphics statements in an automated way:

Create a newunit just after the initial $syntaxlevédine:
Type the command namerlit" at the start of the line,
then press TARhen type test' for the name of thanit.

Press Return, then type the command nadrew", then press TAB
Make sure that you leave the editing cursor located just after the TAB.

Choose "Selectunit" from the Option menu and choose "test" for timét.

Click the mouse somewhere in theecutiorwindow (the graphics window).
Note that an x-y coordinate pair for that point is added to your program.

Move the mouse to another location in the execution windowctiokl again.
A second x-y coordinate pair is added to your program, and the program
is automatically compiled and executed, showing a straight line.

If you don't see a straight line, choose "Select unit" on the Qpomn
and give the name of the unit ("test") that your -draw- statement is in.
It is the selected unit that is executed when you do graphics editing.

Be sure you're notrunning ("Quit running" if necessary),
click again, and you will see two straight lines connecting tbnts.

Next, select one of the x-ycoordinate pairs in the programwindow (that is, highlight the x-y pair by
dragging the mouse across it). Then click in the execution windowsédlbeted coordinateair is changed, the
modified unit is recompiled and reexecuted, and you see the altered lines.

There is a useful graphics editing trick for finding out the coordinates of some part of a display. Start a new line
with an "*" so that this line is a mere comment. Then click in the execufiotiow atone or more locations
of interest, and the coordinates are shown in the comment line, without reexecution of the program.

Command list: You canalso get cT to typeommandnames foryou. On theWindow menu, choose
"Commands" to see a compldist of all cT commandsprganizedinto groups (graphics, calculational, etc.).
Position the commands window in such a way that you can see the program and execution windows as well.

In the commands window, find the wordoX" andclick it.
The command "box" followed by a TAB appears in the program window.
Click at two locations in thexecutiorwindow to complete and see thex.

In addition to providing a typing shortcut, tiemmanddist is usefulfor seeing a completiést of all the cT
commands, grouped by command type.

When the commands window is active, its menu lets you choose which group to displagnydso scroll to
that group, or expand the window to see all the commands.

10

cT MENU OPTIONS
cT Menu Options

File Menu

On the File menu arstandardoptions such as Open, SawandQuit. There arealso somecT-specificoptions
that are explained here.

Auxiliary file: The "Auxiliary file" option lets youexamine auxiliary files, such as librafyuse-)files or
data files. The "Open" option lets yahangethe primary program file, which is the file that gempiled and
executed when you choose "Run from beginning". Use "Open" when you welnarigefrom working on one
program to working on a different program.

Insert file: This option lets you insert program statements contained in another file, or an image. The text or
image isinserted athe currentlocation of the editing cursor. An imageould normally beinsertedinto a

-write-, -text-, or -string- statement. If you choose a file containing an imageargoaskedvhether to insert

just the text that may accompany the image, or to insert the image either in monochrome or color format.

Images can be iRICT or BMP or PPM or PCX formagnd oncethe image hadeen insertednto your
program it is portable across different types of computers.

Saving and checkpointing: While you are developing your programyou shouldremember to save it
regularly. That way, if there is some sort of a malfunction (e.g., a lopsvedr or asystemerror), you will
lose only the work younavedonesince you lassavedyour file. Youcan dothis at any time by choosing
"Save" on the File menu.

In addition, cT has a special protecti@aturethat regularly andautomatically saves a special kind kafckup
file, called a"checkpoint" file, if you do nosave the file yourself. A checkpoint fildiffers from a regular
backup file in that

It is automatically created and saved by cT (in the same directory as your program).

It has the same name as your program plus ".CKP" at the end.

It is automatically removed by cT if you "Save" your program before quitting cT.
If you do not "Save" youprogrambeforeleavingit, then thecheckpoint filewill be left on yourdisk as a
safeguard. Whenever you return to programming, you will find aefigingwith ".CKP" on your disk. If you
decide toopen the ".CKP" fileandwork with it, you need torename it to indicatéhat it is no longer a cT-
generated backup file, which may be removed when you quit.
In the "Preferences" on the Option menu you can specify the time between checkpoints.

SeeAlso:
Images & Files (p. 91)

Edit Menu: Comments, Indents, and Hidden Units

On the Edit menware standardptionsfor Cut, Pasteand Copy. There arealso somecT-specificoptions for
controlling comments, indents, and hidden units.

Comments: A well-commented program is easier for you to work with and makeasier for another person
to maintain your program. Blank lines may be left in the program to improve readability.

* any line that starts with an asterisk is ignored

11

INTRODUCTION

do someunit $$ an end-of-line comment

* An asterisk and/or blank lines
* at the end of each unit makes
* your code easier to read

*

There are no end-of-commemiarkers incT. Commentmarkersrefer toone line at a time. To write a long
comment or to temporarily disable several lines of code, you must put an astegakhtine. The 3marker
is used to put a comment at the end of any line of code.

The editor provides a way tnsert or remove asteriskefore severdines of codewith one action. Use the
mouse to select the lines to be modified, then choose "Comment Lines" or "Un-Comment Lines" fixit the
menu. This is extremely useful when debugging a program. A standard debugging technique is teshwmest a -
command to displayhe value of someariablethat is in doubtfollowed by a -pause- to suspend execution.
Using the menu options you can quickly comment in or comment out this debugging code.

Indents: Indenting isrequiredfor commands inside a -loop-, -if-, or -case- structure. If such a structestésl
inside another one, multiple indents are required:

loop i:=1,5
loop ji=1,10
endloop

endloop

You can use either TAB or period-TAB, whichever you find more readable:

loop i:=1,5

loop ji=1,10
. endloop
endloop

You can easily change the indent level of a group of lines. Use the mouse to select the lirdwatgbd, then
choose "Indent Lines" or "Un-Indent Lines" on the Edit menu one or more times.

Hidden units: When working on a long program, it is convenient'h@e" the many units thalbavealready

been completed, so that only the units you are working on aredigiijayed. To hide anit or toredisplay a

hidden unit, place the mouse cursor in that unit, then cHbtide Units" or "Show Units" on the Edihenu.

A hidden unit shrinks to just the unit statement with a line below it indicating that there are hidden contents. To
hide or show several adjacent units, select thadthen chooséHide Units" or "Show Units". There arealso

options to "Hide All Units" or "Show All Units".

Compose character: This option onthe Edit menu (oits keysetequivalent) is used tmput non-English
characters. See the topic, "Typing Non-English Text".

SeeAlso:

Arithmetic Operators (200)
Typing Non-English Text (p. 184)

12

cT MENU OPTIONS

Other Menus

Search menu: The Searchmenu lets yousearchfor specific strings of characters inyour program, and
optionally to replace these strings with other strings.

Style menu: The Style menuwffers the usual optiongor making mouse-selectetext italic, or bold, or
superscripted, etc. The Bigger and Smaller options make the selected text bigger or smallerdifaoltfent

size set by a -font- command (or by the default font size). The difference between Leftahas&@yl Justify is
that left-justified text does not automatically wrap to the next line at the right margin of the tedefaBit, in
a new file lines are left justified, so that the display of long lines is truncated at thedgghbtfthe window. If
you would like some lines to wrap around, make them full justified.

Color menu: This is an extension of the Style menu. It lets you imposel@ onmouse-selectetext, and
this color overrides the color specified by a preceding -color- command.

Font menu: The Font menu lets you imposeparticularfont on mouse-selectetext. For an explanation of
which fonts correspond to ttstandard cTfonts zsans, zserifixed, andzsymbol, see "Generid-ont Names".
The "Icon" entry on the Font menu lets you insert icons (graphic characters) into yo{settike topic "icons
Selecting an Icon").

Option menu: See"Preferencesand“Making and Saving Binaries”. The various Ruand Executeoptions
are described in "An Example Program".

Window menu: Choose to see the Help or tBemmands window, or whictvindow should coméorward.
On the Macintosh, choosing "Mac SE" or "Mac II" makes the executindow bethe size that istandard on
those Macintosh models.

SeeAlso:
Generic Font Names B27)
Preferences (p- 13)
Making and Saving Binaries (p- 16)
An Example Program (p- 5)
icons Selecting an Icon (p- 93)
Preferences

It is possible to specify editingreferencegor suchthings as font, font sizegnddefaultcolor of theprogram
displayed in the program window, and for more technical options as well. Choose "Preferences" from the Option
menu and make your choices.

The choices for what font to use while editing your prognactude zsans, zserifandzfixed. Font size is in
points. Font face is typically "normal” but can be italic or bold.

Tab width is the width of a tab in digit widths (that is, a value of 8 means the width of eight 0's).

Foreground and background colors specify the foreground and background colors of the fwgr&ualors can
be black, white, red, green, blue, cyan, magenta, and yellow.

Checkpoint specifies the number of seconds between saving a .CKP checkpoint version of the file.
Temp size is the maximum number of bytes of disll extended-memowpacethat cT will usefor its own

purposes while running. Thigpace is used whenewitie program yolare running needsmore storagespace
than is available inside the computer's working memory. The default is one megabyte.

13

INTRODUCTION

Turning snapshot on means that cT makes a copy of the exesuatemn wheneveyou stop running. The
menu option "Showexec window"shows you that snapshot. This is especially useful wdoéng graphic
editing on a small screen, if the program window covers up the execution window.

Check"window positions" if youwould like cT to rememberyour final arangement of sourcand execution
windows and use these positions the next time you use cT.

Thesepreferences are stored in a prefererfdes On Unix, if there is no machine-specifioreferencefile
(".ct.prf.dec3100 for example), it will look for a machine-independent copy (.ct.prf).

Printing

Printing the program listing: To printyour program statements, choose the option "Print...therFile
menu. If you want to print only a portion of the program, capgpaste the statements intonaw file. Also
note thathiddenunits take up only two lines on therintout. On some machines, styles (such as italics) or
embedded pictures may be ignored in the printout.

Printing sections of the on-line help:Create a new file. Copy the section of the-line helpandpaste
it into the edit window, then print as with printing any program listing.

Printing directly to the printer: Any marker(string) variablecan besentdirectly to a connectedrinter
by using the -printcommand. Thenarker carcontain styled text (boldtalic, multiple fonts, etc.jand even
embeddedpixel) graphics, as isliscussed irthe section below ("Printing a copy of tkereen directly to the
printer").

dialog page setup 3 optional; asks for portrait or landscape, etc.
dialog print ~ $$ asks how many copies, etc.
print (marker variable) $$ contents of marker sent to printer

If you have never executed -dialog paggup- duringhis session, dialog print- will automaticallyprecede the
print dialog box with thepagesetupdialog box. If you have neveexecuted-dialog print- during this session,
the -print- command will fail and seteturn to 3 (“file not open").

For all three commandsgreturn is set to -1 if it works; otherwise it is set like fiderors(e.g. 4 for"printer
not found," etc.). Alsozretinf is 0 if the dialog boxdid not work, 1 if the "ok" button wapressed, 2 if the
"cancel" button was pressed. It is important to checkitbtirn andzretinf values, because lots of things can
go wrong, including the user canceling the operation (in whichzrasarn will be -1, butzretinf will be 2).

Since the printer dialog boxesdstatus messages come up in locations dnahot undercT's control, the
entire executor window is saved and restored before and after the dialogabdites print status message. This
can look wierd, but iloes avoichaving to take in aeshapesventandstarting execution over again from the
main unit. This is also a possible source of zreturn failure on a machine that is too short on mesaveyao
copy of the screen.

Printing a copy of the screen directly to the printer: The precedingdiscussionexplainedhow to
print the contents of a marker (string) variable. To print a pixel copy ofdiezn directly tahe printer, first
use -get- to place the image into a screen variable, then use -style- to impose this imagarkar wariable,
which can then be printed:

unit PrintScreen
screen: pimage
marker: pstring
get pimage; zxmin,zymin; zxmax,zymax

14

cT MENU OPTIONS

style pstring; screen,pimage 3 imposes image on pstring
dialog print

* should check zreturn and zretinf

print pstring

* should check zreturn

*

Creating a file of screen graphics to beprinted later: There areseveral differentmethods for
printing adisplay generated by cT irthe execution window. While running your program frevithin cT
Create, you can make

a PICT image file on a Macintosh, or
a BMP image file on MS-Windows, or
a PPM (Portable Pix Map) image file on Unix

by choosing "Make PICT" or "Make BMP" or "Make PPM" or on the Option menu. This clerice triggers
a reshapevent, with execution startingver from the start of theurrentmain unit. An image file icreated
that is labeled"yourfile" or "yourfile.bmp" or "yourfile.ppm" or "yourfile.pcx". The image file @mpleted
when you reach the end of theain unit, orexecute apict- command, or>ecute a jump- command, oguit

running. If you make additional pictures, the file names contain a number indicatisgdirence irwhich the
image fileswere madeThese menuwptions are not present when running eompiled binarywith the cT
Executor.

The -pict- command lets you start and stop the creation of an imagedigeprogram control, includingvhen
running a compiled binary with ¢cT Executor:

pict “filename” $$ can be a marker expression
if ~zreturn 3 ifcannot create or use file (already exists)
pict 3 blank tag completes the image file

The initial -pict- command attempts to create $pecifiedfile (andreturns a FALSEzreturn value if it cannot
create the file). If the file already exists, the contents of the file are deleted in preparation for tireatimage.
You can, of course, use a preceding -setfile- commaruthéok whethethe file alreadyexists. Inaddition to a
blank-tag -pict- command, an image filecdsmpleted ifyou reachthe end of amain unit, orexecute a -jump-
command, or quit running. By default the format of the image file is PICT on Macintosh, BM#ndiows,
and PPM on Unix. To save an imageRPM format on a Macintosh or Windows, use a file nanding in
".ppm", such as "image.ppm".

The -put- command in the form -put screenvar; "file name"- creates an image file from a screen variable that had
previously obtained a portion of the screen using a -get- command (see "Images & Filegfaultyhe format

is PICT on Macintosh, BMP on Windows, and PPM on Unix. If the name of the file ends in ".ppiniate

is in PPM format on all platforms. Note that while the -p@mmandandthe cT Createmenu optionscreate

an image of the entire window, the -put- command lets you save a portion of the window.

In all of these cases the image is stored in a pixel or "paint" format, with one exception. On a Macintosh, the
-pict- command and the cT Createenu options store the image in alnject-oriented'draw"” format, andonly

the graphics commands executed after the -pict filename- statemiatt dbe image file. On other platforms,

when the blank-tag -piccommand is encounterglde entirescreenimage visible at that time isaved. It is
possible that in future versions of cT the -pict- command will be abtenerate object-orientéchage files on

other platforms.

15

INTRODUCTION

Onceyou havecreated arimage file, youcanreadthe image into youfavorite drawing orpaint program, or
insert the image into a word processor document, or even insert it into your ogvogcamwith "Insertfile"
on the Filemenu.

SeeAlso:
Images & Files (p. 91)

Making and Saving Binaries

The source file is the file into which you type your cT program. Thasurcefile can be moved to any
computer that supports cnd usedvithout change(but seethe discussion "Moving to Other Computers").
When you execute anit, aprocesscalledcompiling produces dinary if one doesnot alreadyexist. The
binary contains instructions that the computer understands and is unique for each machine.

When testing individual units in the programming environment, you wikirely seelong delays due to
compilation because units are compiled one at a timeeededHowever, ifall units have to be compiled the
compile timecan be rathelong. Thishappens if newnits areadded orold onesdeleted, or if no up-to-date
binary already exists. You may find it convenient to keep a dummyanmiind to avoid delayshen youwant
to create a little unit to test some cT statements.

The menu choiceMake Binary" forces cT to producand savea binary file. This binary file iseadthe next
time you edit your program, eliminating theeed torecompileandtherefore speeding utine editing process.
When you are editing, it makes sense to make a binary just before leaving cT, so Huair¢bandbinary are
in agreement.

When a program is compiled, the conventional ".t" extension is dropped and the extension ‘adtiet Sther
extensions are preserved.

On Unix machines, the extension for a binary beconmachinenametb", as ".sun3.ctb”, and a binatgn be
run without the program source by including a "edmmand-lineoption, with aprogram name thateed not
include the binary extension:

cT -x programname

The last-modification date and time of the sourceaheuse-dfiles are comparedvith the date andime stored
in the binary. If the source file or a -use-d file has bal@redsince the binary file wasreatedthe binaryfile
will be recognized as obsoletmdwill not be used. Therare additionainternal checks to make suthat the
version of cT being used is compatible with the binary.

Whenyou want to distribute your programrepare abinary and distribute the binary along with thieeely
distributable cT Executor (the run-time package). Include any auxiliary data or icon files, which shplaickte
in the same directory as your binary. For Windows, you at¢sal tosupply the fonts thatamewith cT: the
".fon" fonts must be installed using the fonts Control Panel, or as part of an installation procedure.

When you distribute your own programs dthers, youshouldprovidethe following information incasethey
alreadyhavesomeold cT binariesaccompanied by anld Executor: "Differentversions of the cTExecutor
expectdifferent dataformats in cT binaries. If younave oldbinaries, you should retain a copy of the old
Executor to run those binaries."

SeeAlso:
Moving to Other Computers (p. 21)

16

ADDITIONAL LANGUAGE ASPECTS
Additional Language Aspects

Differences from Other Languages

This summary is intended for experienced programmers, to compare calculations in cT with calculatibes in
programming languages that you might already know.

Compared tamost programming languages, cT is unusuapiiaviding built-in and easy-to-usesupport for
graphics, mouse interactiorand multimedia. However, theore calculational facilities in cTare similar to

those in other algorithmic programming languages such as C, Pascal, Fortran, or Basic. Nevertheless, you
should beaware ofthe following calculational aspects of cT that maydiféeerent from a language/ou have

used.

Floating rounds to integer: cT automatically makes ahecessarnconversions between real numbers
(floating-point) and integers, including assignment statements and pass-by-value subroutine argberents.
essentially nadifferencebetween23" and "23.00"; cT will compileeither a floating-point or integeralue
depending on which is more efficient in the particular context. Floating-point vataesunded(not truncated)

to the nearest integer (4.8 rounds to 5).

Floating and integer division: A relatedissue is that inordinary division with the "/* operator, the
quantities aranadefloating-point before carryingout a floating-point divisionandthe result is floating-point
(for example, 3/4 is treated as 0.75, not 0 or 1). The $divt$ and $divr$ opgratfmsn integedivision, either
truncating or rounding the result.

Fuzzy zero: In order to compensate foround-off errorscaused bythe finite precision of computers, cT
considers a = b to be TRUE if abs[(a-b)/a] <X®r abs(a-b) < 18 (similarly for a < b etc.). Essentially, for
purposes of numerical comparison, cT considers very small quantitiesefqudlleto zerqandtwo suchvalues
aretaken to besqual to eaclother),because théinite precision of computersanlead to two quantities that
should be identical actuallgiffering veryslightly. If you need tocomparetwo very small quantities tceach
other, scale them upeforemaking the comparisoffor example,checkfor 1E10*a = 1E10*b). Alternatively,
the statement -inhibit fuzzyeq- turns off the use of the fuzzy zero.

Iterative loops can have afloating index: In mostlanguages an iterative loapust have an integer
index (i goes from 1 to 10 by 2's), but in cT ycanuse a floatingndex (fgoes from 0.1 to 0.8 in steps of
0.05). The decision whether tmdthe loop usesuzzy-zerocomparison. The statement -inhiffizzyeg-turns
off the use of the fuzzy zero.

Case-sensitive: Uppercase Band lowercase b areonsidered to be differemétters (as in Cbut not in
Fortran). Some cT programmers take advantage of this distinction by using "ALLCAPS" for naming constants,
"Caps" for naming global variableand "lowercase" fornaming local variables. This convention helps in
reading programs.

Declaring constants: Defining "Variable=10"actually defines aconstant not avariable with the initial
value of 10. Initialization of variables must be done in assignment statements (-calc-).

Pass by value and address: As in Pascal, subroutine argumerten be"pass by value" or "pass by
address". For details, see the -do- command (the cT command used to call subroutines).

Array bounds checking: The bounds on arrays are checked, and an execution error results ihditag are
out of bounds. This prevents programming mistakes from leading to a hard crash.

Run-time evaluation: The powerful eompute-commandcompilesandnumerically evaluatealphanumeric
expressions at run time. For example, the sarppbgramgrapher.tdistributedwith cT lets the useenter

17

INTRODUCTION

systems ofalgebraic or differentiabquationsandthe -computecommand is used tevaluateand graph these
equations.

(a < b <c)is legaliin most languages a two-sided comparison must be performed istéps (a < kand
b < ¢), but cT correctly evaluates a < b < ¢ to be TRUE if b lies between a and c.

Character strings: In order to deaWith rich text, including bold, italic, superscripgnd subscript styles,
Japanese characteesid embeddedmages, cTprovidesunusual'marker" variableghat are quite different from

and more powerful than simple ASCII string variables which you may have used. A marker variable is a pointer
to a starting point in a block of text, with a lendttacketing someext following that startingooint. The
-append-, -replace-, and -style- commands let you maldépracketedext, andall othermarkers onthe block

of text are automatically adjusted appropriately, so that they continue to marketipeictivesections oftext.

For details, see "Introduction to Strings".

Formatted text output: There is noformat statement such as thfatind in Fortran. In cT one uses
"embedded" show- and-showt- commands tgeneratetext involving variablesHere areexamples ofscreen

display (direct text) and file output (marker expression withconcatenation)nvolving a marker variable

"Country" and a numeric variable "Pop":

write <|show,Country|>: <|showt,Pop/1EG6,3,0|> million people.
dataout file; <|show,Country|>+": "+<|showt,Pop/1E6,3,0|>+" million people."

Restoring the screen:A limitation of cT that is shared with other programming languages iswthem the
execution window is broughobrward from behindother windows, oreshapedit is the responsibility of/our
program to repaintthe screen because the window-orientamperating systems that cT runs on do not
automatically save and restore the screen. To enable ymsttwethe screen, cTeexecuteshe current "main”
unit, which is why it is important to understand the concept of main units (see "Main Units").

Debugging: See the topic "Debugging Strategies" for ussfiggestions.

What ¢T can't yet do: This version of cTdoesnot support rictdatastructuresand pointers such as are
found in Pascal and C; cT only provides multidimensional arrays of its various types of variable. Currently only
one window is supported during execution. Ordgtangularegionsare supported fomouse clicksand certain

kinds of graphics operations such as -clip-. Although tie--and -put- commandsan saveand restore a
portion of the screen, graphics commands sucldras/-or fill- cannot write directly into off-screenmemaory,

which puts restrictions on making some kinds of animation run smoothly.

Remember that to see a topic listed under "See Also", just click the topic:

SeeAlso:
Calculation Introduction (p. 187)
compute Storing and Evaluating Inputs 1p5)

compute Computing with Marker Variables @n4)
Introduction to Strings (p. 246)

Main Units (p. 228)

Debugging Strategies (p. 20)

inhibit/allow fuzzyeq (p. 71)

Conditional Commands

In cT, as in other languages, you can use an "if" structure to do different tiipgsding orthe value of some
expression, as in the following example:

18

ADDITIONAL LANGUAGE ASPECTS

if expression < 0

. write minus
elseif expression =0

. write zero
elseif expression =1

. write one
elseif expression = 2

. write two
else

. write greater than or equal to three
endif

In addition, cT offers "conditional commands’hich are convenient in somesituations. The following
conditional -write- command is equivalent to the "if" structure shown above:

write \expression \minus\zero\one
\two\greater than or equal to three

The first argument after an initial backslash (\) is a numerical expression, whigtnded to arintegerbefore
being used to select among the possibilities. The second argument tells what action to take exmEessien
rounds tocany negative integer. The third argument tells what action to take when the expressids to zero.
There may be as many arguments as you need, separated by backslashes. The final argument l{ghesfaated
the value 3) tells what to do when the expression roundstt@aily integer greater than 3

The initial backslash, which signals that the command is a conditional commandimmediatelyfollow the
TAB. The tag of a conditionatommandmay becontinued over severdines, as in theconditional write-
example shown above. Each new line must have a TAB followed immediately by a backslash.

All conditional commands used in cT follow the same pattern. Most cT commands may use a coffiditiaial
except those which deal with structures and definiti@esnmands that may NOT be conditional:

define if loop arrow

use elseif endloop ifmatch

unit else case endarrow
endif endcase edit

Conditional commands are oftesed intrue/falsesituations. Since TRUE idefined tohavethe value -1 and
FALSE has the value 0, a conditional command with a true/false expression in the tag is

command expression\ trueaction\ falseaction

For example:
do \ x<y \ littleX\ bigX
SeeAlso:
Logical Operators
if IF Statements
case CASE Statements

19

INTRODUCTION

Debugging Strategies

There is abuilt-in debuggeffor cT. After describinghow to use it, we list somether features of cTthat
facilitate finding bugs in programs.

Using the built-in debugger: Before running the progranthoose "Debug” from th&Vindow" menu. In
the Debug window, click the "Step" button to step through the program, one command at a time.

Alternatively, youcaninsert -step- or -step TRUE- statemeatsywhere inyour program to haltnormal
execution and put you into step mode. Place -step FAuBIEreveryou want the stepnode toend(you can
also end step mode by clicking "Run” in the Debug window). The -step- commands in your paogignored
if the Debug window is closed.

Important: The Debugvindow must not overlap the execution window. Ithat casethe programwill
continually restart at the beginning of the main unit, due to the "reshape” agsatsatedvith having another
window in front of the execution window.

When a -do- command is encountered in step mode, clicking "Step" will execute all of the statements in the -do-
ne unit and halt on the statement that follows the.Alternatively, if you want to go into thdetails of the
subroutine, click "Into" to go into thele-neunit andexecute itstep bystep.(You canclick "Into" at other

times as well to take one step.)

At any time that you are in step mode you can click "Stack" to display the current sequence of nested -do-s.

Type the name of one of your variables in the "Expr" slot, press Enter or Return, aae ghawn thecurrent
value of the variable. You can even evaluate an expression such as "x+3ylisflag of the value isipdated
at every step. The values of local varialtas beshown only when yoware stepping through the univhere
they are defined. The Stack window is used to display styled text (that is, text that may be italic, bold, etc.).

While stepping the program, if either the Debug or Stack window is covered by the other one, you can bring the
window to the front by choosing Debug or Stack from the menu.

-show- and -pause-: A very useful debugging strategy is to insert tempocagesuch as the following,
which erases a small region of the screen, displays the values of some variables in thabndgeunses to let
you observe and think about these values before proceeding:

erase 10,100; 200,150

at 10,100

write count = <|show,count|>, ratio = <|showt,time/count,1,3|>
pause

When you have the information you needeletethis debuggingcodeor, if you think you mightneed itagain
soon, comment out this code by selecting all four lines with the mmdehoosing "Comment Linedtom
the Edit menu. Later you can uncomment these lines to reinstall the debugging code.

-menu-: You might put the debugging code in a menu-driven unit, so thatcgonuexaminghe current value
of the variables at various times just by choosing yaebuggingunit from apull-down menu(createdwith a
-menu- command). This is feasible only for global or "group” variables, and it magcbssary tanove some
local variables temporarily into global or group variables in order that the menu unit can access them.

-beep-:If you are trying tounderstandhe flow of control of your program, itan beuseful to insertbeep-

commands at various points so that you gedagible indication of whethahe program passes through some
section of interest.

20

ADDITIONAL LANGUAGE ASPECTS

Graphics debugging:If you are trying to debug a complicated numerical algorithmeait be veryuseful to
use -draw- or other graphics to visualize some aspect of the algorithm. Using different colors in the graphics can
be helpful for marking stages through the algorithm.

Choose the unit to execute: You can execute a particulamit simply by placing theediting cursor

somewhere inthat unit and choosing"Execute currenunit” on the Option menu. If yoare debugging a
subroutine that accepts arguments, you can't execute the subroutine directly, but if the subrdotimehy a
unit named'Driver", use "Select unit" on the Option menu gpecify "Driver" asthe selectedunit. Then

whenever you choose "Run from selected unit" or "Execute selected unit" you start femprapriate place in
the program.

If there are important initializations in the first unit of the program, but you really want to start at unit "zonk",
temporarily put -jump zonk- at the end of your first unit, and run from the beginning of the program.

When trying out a command you have not used before, youfwant to test &agment ofcode, create a new
unit and try things therayithout disturbing the rest of the program. Creatingleleting aunit, or changing
global definitions(beforethe first -unit-command), currentlyeads to acomplete recompilation of thentire
program, which can cause a noticeable delay if the program is very long. For thaty@asoayfind it useful
to keep one test unit around at all times, the contents of whicltgrmehangevithout triggering acomplete
recompilation.

Scrolling text: If you need anextensivesequence ofiebugginginformation, you might use theedit-
command to create an edit panel with a vertical scroll bar, and use -append- to add debugging infotittktion a
at a time to themarker associatedith this edit panel. At any time yowan scroll through thedebugging
information.

Write to a file: A similar technique is to createfde with -addfile- anduse edataout- to appendata to the
file. After running the program, use "Auxiliary file" on the File menu to examine the debugging information.

SeeAlso:
show Displaying Variables (p. 47)
showt Specifying the Format (p. 48)
pause Single Key & Timed Pause (p. 125)
Summary of Menu Formats (p. 136)
beep Making an Audible Tone (d22)
append Adding Characters to a String @69)
Scrolling Text Panels (p. 149)
addfile Create a File (p. 289)
setfile Select &ile (p. 291)
dataout Write Data to a File (p. 298)

Moving to Other Computers

One of the advantages of cT is that source files can be moved from one type of computer toracothgited,
and run without change, but a fully satisfactory porting may require a bit of planning (and the availability of the
cT compiler on the other computer). Here are the main considerations that affect portability.

1) You can use the sequence -font-, -fine-, and -rescale- to tn@kmogram adjusts size to fit theavailable
display space. Here is an example:

font zsans,20 3 font type & newline height

fine 500,350 $$ graphics coordinates in an area 500 by 350
rescale TRUE, TRUE, TRUE, TRUE 3 rescale graphics and text

21

INTRODUCTION

The sample prograsample.tincluded with cT uses this techniqudyou might like tosee what happens in
that program as yoahangethe window size. Anothettechnique is tocustomize your displays to fit in the
available space given by the systgariableszwidth andzheight, or zxmax andzymax (for an example,
see "An Example Program"). As you write your program, occasionallgliffierent windowsizesandshapes to
make sure that the display rescales gracefully, as an indication thiit #lso run onanother computewith a
different screen size.

2) Don't use local quirks such as an unusual font that is available on only one kind of computer. Unfortunately,
eventhe same font owlifferentkinds of computers may not take @emactly the same amount of horizontal
and/orvertical space, so that text whifiis a box on onekind of computemight spill outside the box on

other kinds of computers. You might use a larger box and use a "center" style to center the text ifesghkr the

box. Font differencesare the single mosterious problenwith porting cT programsfrom one platform to
another.

Ultimately it is important that you try running the program on another computer to make sure thatdthetr or
problems are not serious. In some cases it may be necessary at the beginning of the program stgtiigose
different fontsizes (with a -font- or -fontpeommand) based otihe value of systemariablezmachine like
this:

case zmachine
"macintosh"
font zsans,13
"windows" $$MS-Windows
font zsans,16
else
font zsans,14
endcase
if ~zreturn
write Cannot obtain font.
pause
jumpout
endif

A related issue is that on some computers, especially machines running Windows or Unix, the number of pixels
per inch is quite variable. For that reason a font that hasriage-returheight of 15 pixels might be almost
too small to read. You can use -sysinfo default newline, myvar- to find out what is a normal readable font size.

It is possible to move a font from the Macintosh to Windows: see the -font- command for instructions.

3) Keep in mind the limitations of your target machine(s), especially with respsctetensize and processing
speed. You simply cannot display 50 lines of text onstinall screen ofsome machines. Aomplicatedplot
that takes 5seconds on dast computemight take 20seconds oranother. While 5secondsmay be an
acceptable delay, 20 seconds may not be acceptable.

On the othehand, ananimation that looks fine on a slomachine may run muctoo quickly on a fast
machine. A way around this is to use the system varmthbek before and after a few iterations of a loop, and
use the elapsed time to determine how much the animation shosldwesl down on aery fast machingfor

an example, see the sample progtatht includedwith cT; for a simplerschemeinvolving zclock see "An
Example Program™).

4) If you use color, us#allback" options in palette- commands to enalilee program to run onon-color

computers, or on computers wifbwer colors. The -sysinfoeommandgives moredetailedinformation about
color availability tharencolorsdoes.

22

ADDITIONAL LANGUAGE ASPECTS

5) Color images thatave been inserteimito your source progranare portable to other platforms without
change. It is possible that colors may be someuwliffgrent if the standard'system" palette issomewhat
different onthe differentcomputers. If your color imagese in files accessedvith -get-, youcanuse PPM
format as a universal format recognized by cT on all platforms (see "Images & Files").

6) Icons (bit-map images) do nascale. Ifyou are moving among noticeablglifferent screersizes you may
need to prepare several sets of icons in graduated sizes.

7) To move an icons file from one computer to another, first use theemtitor program I€on Maker on
Macintosh,icon.ton other platforms) terepare auniversal ".fdb" form of thecons file andtransfer it to the
other computer. Then use the iceditor onthe other computer to convert to the fornagipropriate to that
computer. (But onUnix machines, conversion from thfdb format is automatic when your program first
executes an -icons- command.)

SeeAlso:
An Example Program (p. 5)
font Selecting a Typeface (p. 43)
fontp Selecting a Specific Typeface (p. 46)
fine Declaring a Screen Size (p. 35)
rescale Adjusting the Display (p. 37)
Sample Programs (p. 28)
Images & Files (p. 91)

cT Datastream

The following information isprovided for the benefit ofexperiencedporogrammers who mawish to make
conversions between cT rich-text soufites andother rich-text formats such as thassed byparticularword
processors.

Whenyou save on disk a styled cT file containiitglics, bold, images, etc., ciiepresentshose styles and
images in a form that is 7-bit ASCII and has a maximum othdactergper line. This allows the files to be
sent by electronic mail and by file transfer mechanismsHere is anexample of what iscalled the cT
"datastream":

write Anitalic word. 3 how it looks wheaditing
write An @1ff 2italic@1ff8000 word. $$ how it is stored on disk

The "at" sign (@) introduces special codes that describe the style. In the sequence "@1ff 2" abwlieatss'’
a style change, "ff" indicates a font-face style such as italic or hottthe "2" following three spaces indicates
italic, while thesequencé@1ff8000" indicates a change twain (unitalicized) text. The formatfor a style
change is @1SSxsyy, where SS is a two-letter code suchagifkx and yy aréwo-letter hex numberéase
16); leading zeros canptionally berepresented bypaces. The totalescriptionfollowing the @ isalways
exactly 8 characters long.

Here are all the two-letter style codes, with the meanings of the two hex numbers that follow them:
fs font size
percent bigger or smaller than the default size
0 = default size, 1 = 1% larger, -1 = 1% smaller
if number <= a certain big negative number ABSSIZE,
then -(number-ABSSIZE) is the absolute point size

ff font face

23

INTRODUCTION

1 =bold, 2 = italic, 4 = underline, 8 = outline, 16 = shadow
32 = subscript, 64 = superscript
bits are or-ed together; 0 = plain text

pl paragraph
right-most bit = invisible
next two bits [(number rsh 1) $mask$ 3] are justification
0 = left justify, 1 = centered, 2 = right justify, 3 = full justify
remainder [number rsh 3] is a paragraph layout index in the
PARA table discussed later

cl color
palette number (0-7) for foreground color of text, or
background color in mode inverse

fg font group or family (zserif, zsans, etc.)
number refers to entries in a FONT table discussed later

ht hottext
index into a HOTT table discussed later; index = 8000 means not hot

For each of these styles, the number 8000 indicates the default style at the time of dispgtgrnased by the
current environment (for example, in relation to a font specified with a -font- command).

In addition to style sequences, text may contain other special sequences as follows:

1) Ordinary characters with ASCII codes less than 127 represent themselves (except for "@").
2) The character "@" introduces a special sequence, such as @1ff8000.

3) The sequence "@@" represents the @ character itself.

4) There are two special sequences that delimit the beginning and end of the datastream:

"@cT datastream n" starts the datastream (version number n).
"@cT end" terminates the datastream.

Usually there is just one datastream in a file, but if N -dataout-s of markers are made to a styledtcfdes N
datastream segments in the fiEgchbeginning with"@cT datastream nandendingwith "@cT end". For an
example of a file editor that deals with such files, see the progditfile.tin the cT sample programs.

5) The sequence of "@" followed by a newline character (<|cr|>) represents a leatlihasbeenadded to the
datastream to limit the length of the lilgecausesomeelectronicmail programs cannatealwith long lines).
This sequence is discarded when the file is read into the computer.

6) The sequence "@O0xx" representsrggle ASCIIcharacterwhosehexadecimal encoding iex. For instance,
the yen sign is "@0a5". The sequence @O0xx always has exactly four characters.

7) Thesequence@4SSSSintroduces a specialatasegment in thedatastreamand such adatasegment is
terminated by @5SSSS. Currently the four-letter SSSS dodesle FONT (a table of fontsised inthe file),
PARA (a table describing types of paragraph layouts), HOTT (informasisaciatedvith hot text),and STXT
(a graphic element). The details of these data segments follow.

24

ADDITIONAL LANGUAGE ASPECTS

a) FONT: a font-family table. The font-family table maps font names to the font-family numbers of the original
file. This allows a font-family style sequence (@1fgxxyy) to refer to a font by a numberathéte looked up
in the font-family table to get the actual name of the font. Here is an example:
@4FONT
6
2 zserif
3 zsans
17 zsymbol
15 Palomino
14 Technical
@5FONT

The first entry in the table ("6" in this case) is the decimal number of entries in the tabdweRoentry in the
table, the font-family number (a 3-character hex number) is followed by a space and then the font family name.

b) PARA: a paragraph layout table. An example of a speeicgraph isone with acentered or right-adjusted
style. Theparagraphtable mapsaragrapHayout numbers to the actuphragrapHayout data. This isneeded
because the actual layout numbarsassigned sequentially fayouts as thewre createdTwo versions of cT
with different histories will assign different layout numbers to the same layout data. Here is an example:

@4PARA

3

818099024
105499024

18 180 0 108 0 24
@5PARA

The first entry in the table ("3" in this case) is the decimal number of entries in the tabdweRoentry in the
table, there are six parameters:

a) paragraph layout number (hex)
b) tab size (decimal)

c) left margin (decimal)

d) right margin (decimal)

e) paragraph indent (decimal)

f) extra line height (decimal)

¢) HOTT: a hot-text table. The hot-text table contains the "hot info"asstciatedvith each piece ohot text
(for a discussion of hot text, see "edit Scrolling Text Panels"). Suppessaretwo words ofhot text in the
file, "first" and"second",andthe hot infoassociatedvith "first" is "Happy" andthe hot info associatedvith

"second" is "Two". Here is the text with hot styles ("@1ht n"):

The @1ht 1first@1ht8000 item and the @1ht 2second@1ht8000 item.

Here is the corresponding HOTT hot-text table, which is placed anthefthe file, justbeforethe final @cT
end:

@4HOTT

2

5

3

@cT datastream 1
HappyTwo@cT end
@

25

INTRODUCTION

@5HOTT

The first entry in this hot-text table is the number of hot-text items (2 in this case). For each item, the length is
given (5 for "Happy", 3 for "Two")All the hot-info text isconcatenated'HappyTwo") and containedwithin

another cT datastream. Currently the execution of hot(texat happens when the textdsuble-clicked)only
handlesplain-text hot info strings, but eventually cT may support feliyled text in thehot info, which is

why this text is enclosed in a regular datastream context.

d) STXT: agraphic element. The first entry in ti S8 XT table is a numericatode for the type ofgraphic

element: 134 is a monochrome image, 135 is a color imreawkl,36 is an icorreferencg(associatedvith the

Icon menu item on the cT Font menu, or created by applying an "icon" style to a marker). The second entry is a
(negative) version number. If the second entry is positive, we assume the version nhumber iandigbentthe

value of -1 (fororiginal version). The remaining entridspend orthe type of graphic elemeniere are the

current possibilities:

Type 134: a monochrome image. The third entry (252) is the raster size, padded out to full computer words. The
fourth andfifth entries givedetailsabout offsetsandorigins forthis image. The sixth entry is theidth and

height (91 pixels wide by 21 pixels high). Thisfadlowed by the characteimage written 4 hexharacters per

word, 16 words per line, left-to-right, top-to-bottom.

@4STXT

134

-1

252

9100-21

912100

9121

(ASCII hex pixel data)
@5STXT

Type 135: a color image (version 2). Timird andfourth entries (20@nd 85) are the width and height in
pixels:

@4STXT

135

-2

200

85

0

(binary pixel data in RGB format, three bytes per pixel, left-to-right, top-to-bottom)
@5STXT

Type 136: an icon reference. The third entry (1) is the number of icons stored successively. The fourth entry (11
12 13) is a list of the icon numbers. The fifth entry is the name of the file in which these icons are found.

@ASTXT
136

-1

3

1112 13
emficons
@5STXT

26

ADDITIONAL LANGUAGE ASPECTS

Note that the @1 styles for font groymragraphandhot textreferencethe datafrom the @4datasegments.
Without the @4 segments those styles have no real meaning. The @4FONT and @4PARA segplacts
at the beginning of thdatastreamthe @4HOTT isplaced atthe end. There caonly be one ofeachtype per
datastreamThe @4STXT segmentsan be anywherand there can be asnany of them adgdesired in a
datastream.

A good way to study the cT datastream format is to create a cT file containing the styles, hot text, or graphics of
interest, save the file, then examine the file withtaandard worgrocessor, which wildisplay all thespecial
sequencewvithout interpreting them thevay cT would to meaitalic, etc. Orexamine the fileusing thefile

editor found in "AFile Editor Application"after deletingthe "styled"parameter orthe -setfile- command, in

order to see the datastream characters without the styles being interpreted.

SeeAlso:

A File Editor Application (p. 155)
Scrolling Text Panels (p. 149)

Syntax Level

As new features are added to cT, it is occasionally necessary to make a chartpatsiineianguage would not
be upwardly compatible. When this is dopegvisionsare maddor automatic conversion of sourcede. The
syntax level shows which level of cT tlseurcecodewas preparedor. The syntax level is given on the first
line of the program and has the form:

$syntaxlevel n

Known Bugs

Here is a list of bugs in cT known at thise.

GLITCHES in the PROGRAM WINDOW

Graphic Editing

The graphics editor does not work on continued lines. That is, a click in the exagintlmw to add ormodify
a point is not recognized if the cursor or getectedegion is on a continuelihe. Workaround:Put all points
on one line (which can have wraparound).

The graphics editor only reports positions to the nearest tenth ("224.7"). If you have extreme \sbal@gne
conceptual unit is several pixels, you will not be able to use graphics editing on the display. For ekample, -
10,10- (or scalex .001- or size 20-) produces alisplay that cannot beditedgraphically,because several
different points on the display collapse down to the same value in the program.

LANGUAGE BUGS: MORE SERIOUS and/or HARDER to WORK AROUND

-rdisk-

The -rdisk- command rotates correatlyly if the x-scale equals the y-scale (that is, if the disk is a circle, not an
ellipse).

27

INTRODUCTION

"zspell" system variable

When -specs okspell- is used, zspledesnot report correctly; it is alway$RUE. Workaround:Check for the
desired response, then issue a -specs okspell- and check again. Set your own flag for correct spelling.

-getkey-

A loop does not check for inputs on every cycle. Thus, you may see some "coasting" with -getkey-. That is, if a
counter says "45" when you press a key, the counter may get up to "48" before the input is noticed.

-jump- with arguments

Reshaping thevindow during execution causése currentmain unit to bereexecuted. Ithe main unit was

initiated by a -jump- command with arguments, such as -jump start(3)-, the passing of argumemnépéateot

on the reshape, gihat the localariables in themain unitretain whatevevalue theyhad atthe time of the

reshape. There are a couple of bugs associated with this process. Local marker variables are not preserved. At the
end of the main unit, choosing a menu option followed by a reshape causes local variablesutprediaable

values. Note that these problems oamuily when the window is reshapddring execution.

Workaround:Avoid initiating a main unit with an argumented -jumput the information in a globafariable
beforeexecuting the -jump-. Or, if you don't like usigfpbal variableghat way, just hope that yowrsers
won't reshape the window until after the next release.

BUG or FEATURE?
graph labels in -mode xor-

Because the lines that display axes and tick marks arab®cross, th&eommandshat make tick marks along
graphing axes (labelx, labely, markx, marky) ignor®dexor-. This may be dfeature"not a bug, but it
means that you cannot use -mode xoretasetick marks. Usemode erasenstead. If you want ahite-on-
black graph, draw the black area first and use -mode erase- for the graph.

Sample Programs

In addition to the small programming examples in the cT help, a number of sizable programs writtéawe cT

been included with cT in order to provide examples of what can be done with the language and to offer models of
how to achieve certain effect&ou are welcome to do whateverou wantwith these programsncluding
modifying them or incorporating them into your own programs.

Note that in many cases most or all of the units in these progmanifidden,"showing only the unihame.
To see the contents of hidden units, select the units of interest with the amold®ose "Show Unitsfrom
the Edit menu.

General

sample.t- This program is a sampler of many of the basic capabilities of cT: color graphics, animations, pull-
down menus, mouse clickand drags, multifont text, "hot" text, calculations, graphing of functions, and
response analysis. After running the program you might want to study the proggarroseehow theeffects

are achieved.

exercise.t- A set of exercises to help you learn the basic concepts of programming in cT. The program contains

a number of incomplete units with suggestions on how to complete them. The cT help contains the information
needed to do these exercises.

28

ADDITIONAL LANGUAGE ASPECTS

editfile.t -- A more complex version of the exampléscussed in "AFile Editor Application". The editfile.t
version reads and writes styled files containing multiple sections (that is, created with multiple -dataout-s).

showicon.t- A program that displays the icons in an icon file. This can be useful in selecting icon humbers for
use in a -plot-, -move-, -cursor-, or -pattern- command.

icon.t-- A program for designing icons, cursors, and patterns, excefiteoMacintosh, for which thprogram

Icon Makeris supplied.

japan.t-- This program displays Japanese "Kanji" characters, using a set of icons "KANJI18.FCT".
Graphics

draw.t-- A basicdrawingeditor, with many of thdeatures of commercialrawing editors, such as grouping
objects together, applying patterns, colors, and arrowheads, and designing your own palette &iraologs
are saved inthe form of cTsource code, syou mayfind draw.t useful in creatingportions of your own
programs, including color -palette- commant@hkis program also illustrates ompproach to "object-oriented”
programming in cT.

map.t-- A little program that displays a map of the 48 contiguous states of the United States, with an ability to
zoom in and out. It uses the -use- fitates.t

Color

palette.t-- A -use- file that provides a set of useful additional colors beyond the basic eight cT icaloiding
dark red, dark green, and light, regular, and dark versions of slate, teal, coral, gray, gold, lavender, and cerise.

setcolor.t-- A -use- file that lets you experiment with the color of an object, in the full context of your running
program. This is useful for deciding exactly what color the object should be in relationship to other elements of
your display.

chaos.t-- A plot of the chaos in a simple population growth scheme. Usually what is plofiest ihefinal-
state population. This program uses hues from blue to red to shaapphmach tahe final state. Theed dots
correspond to the usual plot.

spiro.t-- Make geometrical color designs by choosing the total number of vertices and the number of vertices to
skip. It uses the -use- fillorpic.t

Video
video.t-- A program that gives an example of how to build your own special-purpose video controller, using the
basicvideo commandsThis file can be used as ase-file by other programs. A shovideo clip for testing
purposes is provided withideo.tfor Macintosh and Windows.

Games
BigForty.t -- A solitaire card game that uses -touch- regions, so theént-handlingroutines are driven
automatically;thereare no pause- commands ithe program. The program uses thmse-file animate.tto
provide the option of sliding cards smoothly over the background on sufficiently fast computers.
rilato.t -- A Mah Jong-like game in which you matclerrespondingpairs of tiles. Paircan be chemical
elements and their symbols, American presidents and their years in office, English kings and their years of reign,

or American states and their capital cities. You can also create your own lists of pairs.

Physics andmath

29

INTRODUCTION

grapher.t-- Solves and graphs systems of algebraiordinary differential quations. This program wasFrst
Prize winner in the 1990 Educational Software Contest of the jo@Qumlputers in PhysicéSept./Oct. 1990,
p. 540). The program includes an interactive explanation of how to use the program.

hill.t -- Draw a hill with the mouseplace ablock on the hill, give it an initiabpeedandwatch it move. If

there is a valley, the block may mofack andforth forever(no friction), or slowly come to rest (if you add
some friction with the slider control). While the block moves, bar graphs display the kinetic, potential, and total
energy. At the beginning of the program, the program makes a measurerdetdrioinethe animation step

size, so the animation runs at about the same speed on fast and slow computers.

orbits.t-- Study 2-bodyand 3-body gravitational orbits. Some setup filase providedhat specifyparticularly
interesting orbitsThere is aroption todisplay continuously the potential energy, kinetic eneamnd total
energy.

optics.t-- Place lens and mirrors along a bench, then flash a light. $pagadout and arebent by the optical
elements, producing a spot on a piece of film. There is an interactive explanation of how to use the program.

quantumw.t- Study the quantum behavior of alectron in various kinds gbotential wells. If the well is
symmetrical, the bound states have symmetrical wave functions.

sonar.tandvoltage.t-- Simple examples ahicrocomputer-based-laboratory softwaBmnnect a Universal Lab
Interface (ULI) and Sonic Ranger (distributed by Vernier Softwaieosfland, Oregon, phone 503-297-5317) to
the serial port of either a Macintosh or a PC machinesandr.twill track your motion in front of thenotion
detector. If you don't have this equipment, use the mouse to matkens thatare graphed othe screen. The
program uses the -use- fild_I.t and the icons filémotion The progranvoltage.tuses the ULI to plovoltage

as a function of time.

xyplot.t -- Plot a function of twovariables, f(x,y), using a set of icons differing dot densities (icorfile
randon).

Intercomputer programs using sockets

InterDraw.t -- Run thisprogram on twadifferent Macintoshes in the same AppleTalk zone, or thfferent

Unix workstations on the same netwdptovidedthat a cTserverhas been establishednd two people can

draw oneachother's screens, or run two copies of the program on one Unix workstation. This program is a
simple example of the use of the -socket- command to link separate programs together.

Battleship.t-- The classic "battleship" ganpayed ontwo different Macintoshes in the same AppleTal&ne,

or two networked Unix workstations (provided that a cT server has been established). This is another example of
the use of the -socket- command. It also provides another example of howlfedeorientedorogramming in

cT. The program uses the icons f#&lIPicn

These intercommunication programsolve two cT programs communicating widachother. An important

use of sockets is to connect between a cT program that handles the graphical user interface and a program written
in some other language. At present this is supported on Macintosh SystethonUnix. SampleC-language

programs are provided in the programs distributed with cT. Interprocess communicatidindmws has avery

different structure, and cT supports Dynamic Data Exchange rather than sockets on Windows.

SeeAlso:
A File Editor Application (p. 155)

In addition to the suite of sample programs, there are a few other files thigtabeitedwith ¢T but which are
not described explicitly in the basic installation procedure.

30

ADDITIONAL LANGUAGE ASPECTS

To create small images to design icons, cursors, and patterns, use the progritakeroanthe Macintosh or
icon.t on other machines. The use of these programs is documented in the on-limedbglglaking Icons on
Macintosh" and "Making Icons on PC & Unix".

The program MacFDB is used on the Macintosh to convert a Macintosh font to the cT universal "FDB" format,
andthese filescan be converted to Windovients using the programfelbpc, fpcwin, and fntfon (which are
installed with cT on Windows). The procedure is described in "font Selecting a Typeface".

See Aso:
Making Icons on Macintosh (p. 95)
Making Icons on PC &Jnix (p. 96)
font Selecting a Typeface (p. 43)

31

GRAPHICS & TEXT
2. Graphics & Text

Graphics Introduction & Defaults

Screen positions are expressed in the x,y coordinate system, with the x- and y- pssjgayated by aomma.
When several points are given on one command line, the points are separated by a semicolon:

X1,Y1; X2,Y2; X3,Y3
There are three coordinate systems available for making graphics:

Absolute -- most ordinary graphics
Graphing -- graphs & "real world" coordinates
Relative -- rotated and scaled graphics

In the "absolute" coordinate system, the points refer to pixel posiiilmts onthe screen).The point 0,0 is at
the upper-left corner othe available display space. The 'tdordinategrows larger as apoint moves to the
right. The "y" coordinategrows larger as goint movesdownward.For the graphingand relative coordinate
systems, the 0,0 poirandthe direction of increasare controlled bythe program. Ifcoordinates argiven as
floating-point values (numbers with fractions), pixel positions are rounded to the nearest pixel.

All three coordinate systems may be used on the same display. Which display system dependsoth on
the taskand onyour own programming style. At the beginning of the progrdefaultpositionsandscaling
factors areset so that théhree coordinatesystemsare equivalentuntil the program explicitly defines the
graphing and relative systems.

In a multiwindow environment, thevailable display spaceefers to the space controlled by the progead not
the entire display screen. In the cT programming environntieere is a "source" windoand an"execution”
window. The available display space refers only to the execution window.

Any number given in an example for a graphics command can be replaced by a variable or an expression.

at 150,50
at Xposition, Yposition
at 3count + 27, Yinitial + steps / 7

cT automatically makes ahliecessarnconversions between realmbers (floating-pointland integers. If a
floating-point number or variable is usadherethe program "expects" an integer, the floating-point number is
roundedto the nearest integer. The valuads truncated. For example, 4.8 rounds to 5.

Graphics Defaults: At the beginning of a program, tlasolutecoordinate system puts the 0,0 point at the
upper left of the display and makes one unit be one pixel. That is, the point 1,1 is one pixel to the right and one
pixel below the poin®,0. The position of 0,0andthe meaning of 1,fan be modifiedvith the commands

-fine- and -rescale-. The discussions in this manual assume that moving from 0,0 to 0,1 is a movement of one
pixel.

Upon entry into a program, default values are set for the graphiegneterandthe relative parameters. If the
program does not explicitly initialize a graphing system, a "g-typaincand behaves as if itere in absolute
coordinates.Similarly, unless arelative system isdefined, the "r-type" commands behavéike absolute
commands. That is, -gdraw- and -rdraw- behave just like -draw-, -gbox- and -rbox- behave just like -box-, etc.

The default parameters for graphing are

32

GRAPHICS INTRODUCTION & DEFAULTS

gorigin 0,0
bounds 1,1
scalex 1
scaley -1
polar FALSE

The default parameters for the relative coordinate system are

rorigin 0,0
size 1
rotate 0

Main Unit Defaults: At the beginning okverymain unit, thescreen iserased(filled with the window
color), the current screen position (zwherex, zwherey) is set tafij@he leftandright marginsareset to the
edges of the available display space. Graphing and relative paramet@sraset to default values.

SeeAlso:
Inhibit and Allow in Judging (p. 177)
fine Declaring a Screen Size (p. 35)

rescale Adjusting the Display (p. 37)

33

GRAPHICS & TEXT

Basic Graphics & Text Commands

Describing the Screen

Window Size and Title
A "$window" statement at the start of a program lets you specify the initial size of the execution window:

$syntaxlevel 2
$window 100,100 $$ execution window will be 100 by 100, if possible

In the absence of a $window specification, the cT executor .
The -wtitle- command sets (or resets) the title that appears at the top of the execution window:

wtitle "Esperanto Verbs" $$ title in quotes,
3 or marker expression (character string)

SeeAlso:
fine Declaring a Screen Size (p. 35)

at: Positioning Graphics

The -at- command specifies a position on the displasets a left margin for the display of tgpbduced by
-text-, -write-, and -show-. It optionally also sets a right margin and lower bounds for text.

at beginx,beginy
at X,y; rightx,bottomy
at ; rightx, bottomy

The -at- command with one scregosition sets a left margifor the display of texandsets the bottom-right
margins to the bottom-rightorner ofthe availablescreen arealhe -at-with two screenpositions sets both
right and left margins and sets a bottom boundary below which text wikhpysar. Ifthe first screenposition
is omitted, the positiorand left margin are set to thecurrent screerposition. Thesetwo commands are
equivalent:

at zwherex,zwherey; rightx,bottomy
at ; rightx,bottomy

If -fine- and -rescale- are not in effect, thesition isexpressed iractual screempixels relative to thaipper-left
corner ofthe window. If fine- and -rescale- arased, the arguments oét- expresgositions relative to a
conceptual screen.

Entering a new main unit resets the margins to the left and right edges of the display area.

Example:

In this example, the margins chosen are too small. Not all of the text is displayed. Changing the "200" to "300"
will make all of the text visible.

34

DESCRIBING THE SCREEN

unit xat

at 0,0

write This is at the upper left.
at 100,50; 200,160

text

This text starts at 100,50. The right margin is at 200 and the
lower bound, below which the text may not extend, is at 160.
\

*

SeeAlso:
Graphics Introduction & Defaults (p. 32)
clip Limiting the Display Area (p. 63)

atnm: Positioning with No Margin

The -atnm- command specifies a position on the screen. It differs from the -at- command only idabstnibt

set margins for the display of text and variables. The previous margins are left unchanged, and text outside those
previously set margins will not belisplayed (to remove theseconstraints, execute -at zxmin,zymin;
ZXmax,zymax-).

atnm X-position, yposition $$ fine grid
Example:

unit xatnm

box 50,50; 250,200

at 50,50; 250,200

text

This little paragraph uses the margins set by the -at- command.
\
atnm 120,100
text
The -atnm- specifies the beginning of this paragraph, but it
does not change the margins set by the earlier -at- command.
\
atnm 21,178
write Some of this text will not display
because it is outside the margins.

*

fine: Declaring a Screen Size

The fine- command specifiethe range of coordinat@ositions used by aprogram. Ifthere is no rescale-
commandgeach coordinatposition (such as "115,237'Qorresponds tdhe actual pixelposition (within the
program's window) on the screen. A position that falls outside the available display area is not shown.

fine x-dimension, y-dimension
fine x1,y1;x2,y2

35

GRAPHICS & TEXT

The fine- with one coordinatepair specifies that theoordinates used bthe progranrangefrom (0,0) to (x-
dimension, y-dimension). If the space available is greater than required (and -rescale- is not active), the display is
centered within the available space. If the available space is too small (and -rescateadtve), thdower and

right portions of the display are lost.

The form with two coordinate pairs specifies that the coordinates of the progmgefrom (x1,yl) to (x2,y2).

This form is used when the program must be fit onto a stigglay spacendthe author knows that therea

above and to the left of (x1,y1) can be ignored. This format can also be used with -rescale- to expand a section of
the display.

-fine- and -rescale-

The {fine- and -rescalecommands, working together, allow the authorrégardall screenpositions as
conceptual positions. When the program is executed, the display is automatically adjusted so that it fits into the
space available.

When using -fine- and -rescale-, imagthat all graphicsare drawn on giece of stretchy graph paper. As the
size of the display expands and contracts, the paper is stretckmabered irone direction orthe other, bugll
of the paper is visible.

You should pick a -fine- dimension that is convenient to visualize and use it consistently. In general, the -font-,
-fine-, and -rescale- commands belong at the very beginning of a prbgfarathe first -unit- command, or in
the firstunit.

Rescaling is not the only way to deal with variable window sizes. Another way is owvidth andzheight

to detect when a window is too small, and display a message saying that you need a bigger windoothéfet
scheme involves using the values ofidth andzheightto tailor your display to use the available space. See
"An Example Program" for an example of this.

Examples:

Executethe unit belowand experiment withdifferent windowsizes. Then try it again with the FALS@rd
argument, aspect ratio) changed to TRUE.

unit xfine

font zsans,20 3 font type & size

fine 500,350 3 conceptual area 500 by 350
rescale TRUE, TRUE, FALSE, TRUE

at 250,175 $&enter of the screen
circle 50

at 230,165

write Hello!

*

The next examples illustrate usinfine- and -rescale- talisplay aselected area dhe screen. Notic¢hat the
coordinates used ionit "FDraw" rangefrom (0,0) to (399,399). The blank-tag -boeemmandoutlines the
active area of the display. The -rescale- and -fine- at the end of FDraw return to default conditions.

unit xfinel 3 as much of the drawing
fine 400,400 $$ as possible is displayed;
do FDraw 3 the drawing is centered
unit xfine2 $$ the drawing fills the window
fine 400,400

36

DESCRIBING THE SCREEN

rescale TRUE, TRUE,FALSE,FALSE

do FDraw
unit xfine3 $$only a portion of the
fine 50,100; 300,250 3 drawing is visible
do FDraw
unit xfine4 3 a portion of the drawing
fine 50,100; 300,250 $$ fills the entire window
rescale TRUE, TRUE,FALSE,FALSE
do FDraw
unit FDraw
draw 200,0; 399,200; 200,399; 0,200; 200,0
at 200,200
circle 50
box 3 put a box around the display area
SeeAlso:
font Selecting a Typeface (p. 43)
rescale Adjusting the Display (p. 37)
Graphics Introduction & Defaults (p. 32)
Current Screen Size (B21)

An Example Program (p. 5)

rescale: Adjusting the Display
The -rescale- command allows the display to expand or contract to fit the available display space.

rescale TRUE, TRUE,FALSE,TRUE
rescale -1,-1,0, -1

The -rescale- command permits rescaling of the display to fill the window. It has four argumeats #itter
TRUE (-1) or FALSE (0). The arguments specify

use the full width of the window;
use the full height of the window;
maintain the aspect ratio;

adjust the font size.

"Maintain the aspect ratio" meatisat the actual displadistance represented kpne unit in thex-direction

should be the same as the distance represented mniinea they-direction. Rescaling the widthndheight is

not independent of preserving the aspect ratio. When the third argunTeRUE, thedisplayfills the window

as much as possible while preserving the aspect ratio. (This can be thought of as making circular circles.) If the
third argument is FALSE, rescaled circles may become ellipses.

The tescale- commandauses xandy-scaling factors to bealculatedinternally. When "adjustfont size" is
TRUE, the smaller of the twfactors isused toselect a font size. If the displayea is sosmall that an
appropriatefont is not available, anessage appears #ite bottom of thedisplay saying "PLEASEMAKE
WINDOW TALLER (or WIDER)." If the displayalreadyoccupies the fulkcreen, the message is "NO FONT
SMALL ENOUGH."

37

GRAPHICS & TEXT

If -rescale- is omitted, the size of the display does not change size as the window size changes. Displays that are
too large are clipped at the right and at the bottom.

If a font other than theéefaultwill be used aghe "standard"font, the -font- command should precede
the -rescale-command. For font rescaling to work, use the default font $aeyour basictext. If you put
"Bigger" or "Smaller" styles on all your text, font scaling probably won't work satisfactorily.

See the fine- command for examples of -finand rescale-. Refer téhe -font-command for amore detailed
discussion of font rescaling.

The -rescale- command has an optional fifth argument. TRUE (the default) means constrain the graphics scaling
to match availabldonts. FALSE means do not constrain graphiescaling isnot constrained to match
available fonts.

Rescaling is not the only way to deal with variable window sizes. Another way is towvidth andzheight

to detect when a window is too small, and display a message saying that you need a bigger windoothéfet
scheme involves using the values ofidth andzheightto tailor your display to use the available space. See
"An Example Program" for an example of this.

SeeAlso:
font Selecting a Typeface (p. 43)
fine Declaring a Screen Size (p. 35)
Graphics Introduction & Defaults (p. 32)

An Example Program (p. 5)

coarse: "Typing-Paper" Coordinates

For historical reasons, cfirovidesthe option todescribethe display as a sheet btfping paperwith letter
positions: rowsandcolumns. This is'coarsegrid”. One can specifgcreenpositions in terms of rows and
columns of letters instead of in terms of X,y coordinate positions. The -coarse- command specifies the width and
height (in pixels) of a single "character" used by "coarse grid" coordinates.

coarse width, height
coarse 8,16 $dlefault values
at 812 $$ row 8, column 12

In coarse grid, the row and column are written as one number. Every column number mistohdigits. The
position "row 15 column 7" is written 1507. This is just like room numbers in a big building: floor 15 room 7
is written 1507.

If there is a -coarse- commandthe beginning of the programany screenposition inany graphicscommand
may bespecified ineither finegrid or coarsegrid. The program can distinguidtetweenthe two grid types
because everfine grid addresshas two numberseparated by aommaand followed by asemicolon, while
coarse grid is just one number. Coarse grid is much less useful on a systevariatite-widthfonts than it is
where fonts are fixed-width. This manual uses only fine-grid examples.

Coarse-grid coordinates cannot be used unless there is a preceding -coarse- colfryoaridtend touse coarse-

grid coordinatesput anappropriate coarse- command alhe beginning of the progragheforethe first -unit-
command).

38

DISPLAYING TEXT AND VARIABLES

Displaying Text and Variables

text: Putting Text on the Screen

The -text-command is used tdisplaytext. It allows the fullrange of displayptions (bold, italic,centered,
etc.) as well as embedded variables and positioning options.

text left,top;right,bottom

This title is centered.
This is additionakextthat will bedisplayed
\

text left,top; right,bottom; marker expr. $$ special form, no "\" -- see below

The first line of the tag contains optional margins. The display begins gio#igon "left,top". The text is
normally leftandright adjusted("full justified") between'left" and"right". Any text thatwould extend below
"bottom" is omitted.

The body of the -texttommandbegins on the line immediately below tbemmanditself. It is notindented.
The text is terminated by a backslash at the beginning of a line.

The -text- commandndthe closelyrelated string- commandire the onlycommands in cT that do not
follow the pattern of command-at-the-left and tag-field-after-a-tab.

If desired, the margin specifications may be specified "permanently” by an -at- command:

at 100,100; 500,350
text

This is some text.

\

The margins set by the -text- command are temporary; they do not affect the "permanent" margins set by an -at-
command. It is usually better to set the -text- margins as part of the ctemtnanditself. It can bevery
confusing to lose some display because of a right margin or lower bound set by an -at- maggrliareis the

program.

The "Insert file" menu option lets you insert text or graphics from another file into a -text- statement. On some
machines yoiwcan paste graphicslirectly into a -text- statement. Programs containingerted graphics are
portable to other computers.

Embedded -show- commands are used to display the contents of variables. The embedddduote}s, <|cr|>,
and <|tab|> insert double-quotes, carriage-return, and TAB.

With full justification there is automatic word-wrap at the right margin. This slows down executionfasteif
display speed is important don't use the -text- command.

In the special case that you need to display a marker (character-string variable) with all ofstglesyruse the
form -text left,top; right,bottommarkerexpr.- (no "\"). This form isneededbecausehe embeddedform
<|s,marker|> imposeshateverstyle you use in editing the statement (sucHeftsadjusted). Oryou can get
nearly the same effect with the sequence -at left,top; right,bottom- followed by -show marker-, butasethis
you have set "permanent" margins.

39

GRAPHICS & TEXT

Other ways to display text include the -writemmandwhich is suitable for shottexts, the show-command
for displaying marker variables (character strings), and the -edit- command for setting up an edit panel containing
interactive text.

Examples:
unit xtext
box 50,50; 150,150
text 50,50; 150,150
This text is shown in the area bounded by (50,50) and (150,150).
\ $$ initial backslash indicates end-of-text
unit xtext2
box 25,50; 225,150
text 25,50; 225,150

You can displayold text anditalic text.

You can even center it!

In conditional -text- commands, the backslash indiceitend ofone argumentvithin the tag. Thesnd of a
conditional -text- commantastwo backslashes. Notice that a null argumentase where néext should be
shown) is indicated by backslashes on consecutive lines.

unit xtext3
f: temp,value

next xtext3

randu temp,5

calc value ;= temp - 2

at 80,50

write temp = <|s,temp|>
value = <|s, value|>

at 50,120

text \ value \

This text is for value < 0.

§I'his text is for value = 0.

t 3 no text is displayed for value=1
Now value is 2.

t\ 3 end of conditional; no text for >2

*

The optional positioning informatioappears orthe backslaslhines, whichare delimiters between pieces of
text. To try this example, select this unit and use "Run from Selected Unit," then press ENTER several times.

unit xtext4

f: zip
next xtext4
randu zip,4
calc zip:=1zip-2
at 50,20

40

DISPLAYING TEXT AND VARIABLES

write current value of zip is <|s,zip|>

at 50,100; 200,500 3 set default margins
text \ zip \50,50 3 set left margin for this case only
For zip negative, the text starts at location 50,50.

\ $$ no position given; use default margin

For zip = zero, text is at the default position of 50,100.

\300,50; 400,500 3 right and left margins set

If zip is >= 1, this text appears
in the area 300,50 to 400,500.
\\ $$ end of conditional -text-

*

SeeAlso:
write Another Way to Display Text (p. 41)
Scrolling Text Panels (p. 149)
show Contents of a Marker Variable (p. 250)
mode Changing Modes (p. 60)
newline Newline Height (p- 42)
supsub Super/subscript Height (p. 43)
inhibit/allow supsubadjust (p- 70)
Conditional Commands (p. 18)
Defining Variables (p190)
Logical Operators (p. 201)
Embedding Variables in Text (p. 50)

Using Embedded Marker Variables (p. 251)

write: Another Way to Display Text

The -write- command is a convenient way to write sipagtes oftext. It looks"tidier" in your program than
the -text- command, since thedy doesot extendoverinto the command field Also, to achievemaximum
display speed ittruncates rathethan word-wraps atthe right margin. Use the -textommand ifyou need
automatic word wrap.

The -write- command uses explicit carriage returns at the end of lines and a TAB is rbgfareceacmew line
begins. The -write- command does not fill text out to the margin, as the ctewntnand does. If Ane of text
extends beyond the margin, that line is truncated.

Embedded -show- commands are used to display the contents of variables. The embedddddotais, <|cr|>,
and <|tab|> insert double-quotes, carriage-return, and TAB.

The "Insert file" menwption lets you insert text araphics from another filénto a write- statement. On
some machines you can paste grapbiosctly into a write- statement. Programs containimgerted graphics
are portable to other computers.

Other ways to display text include the -text- command which is suitable for long texts, the eshumand for
displayingmarker variablegcharacterstrings), andthe edit- commandor setting up aredit panel containing
interactive text.

Examples:
unit xwrite
at 10,50
write Notice that the body of a -write- command

41

GRAPHICS & TEXT

appears entirely in the "tag field." Successive
lines must start with a TAB.

at 100,125; 200,300

write Because this text does not fit in the margins,
the lines that are too long are truncated.

The next example illustrates a conditional write statement. Two backslashes together meathithgshould
be displayed for the corresponding value of "zip". No text is displayed for zip<0, ZipeBip=3. The value of
"zip" is displayed with an embedded variable.

unit Xwrite2 $$ use "Run from Selected Unit"
f: zip

next xwrite2

randu zip,5 $$random value 1-5

at 50,10

write This time zip = <|s,zip|>.

at 50,50

write \zip\\zip is one
\zip is two

\\zip is greater than three

SeeAlso:
write Another Way to Display Text (p. 41)
text Putting Text on the Screen (p. 39)
Scrolling Text Panels (p. 149)
show Contents of a Marker Variable (p. 250)
mode Changing Modes (p. 60)
newline Newline Height (p- 42)
supsub Super/subscript Height (p. 43)
inhibit/allow supsubadjust (p. 70)
Conditional Commands (p. 18)
Defining Variables (p190)
Logical Operators (p. 201)
Embedding Variables in Text (p. 50)

Using Embedded Marker Variables (p. 251)

newline: Newline Height

The -newline- command lets you control the height of a line, measured from the top of a "T" on one line to the
top of a "T" on the next line:

newline 30 $dine height now 30 coordinate units high
Example:
unit xnewline
i: newline
do xwriteit(10,10)
sysinfo default newline, newline $$ find system newline height
newline 2newline $Houble the newline height
do xwriteit(10,100)

42

DISPLAYING TEXT AND VARIABLES

unit Xwriteit(xx,yy)
i: XX, yy
at XX, Yy
write The second time this is displayed,

all the lines are "double spaced,"
due to the -newline- command.

SeeAlso:
sysinfo Get System Information (p. 319)

supsub: Super/subscript Height

The -supsubeommandcontrols how highabove or below the normal level superscrigigl subscripts are
displayed.

supsub 10 $$ shift super- and subscripts up or down 10 units
Example:
unit Xsupsub
supsub 15 $$ big shift of super- and sub-scripts
at 10,30
write Ho0 and @ displayed with shifts of 15.
*
SeeAlso:
write Another Way to Display Text (p. 41)
text Putting Text on the Screen (p. 39)
inhibit/allow supsubadjust (p- 70)

font: Selecting a Typeface

The -font- command specifies a font famégd asize. It affectsthe characters displayed byext-, -write-, the

-show- family, labelx-and labely-,andthe user's input at ararrow-. The -font-command doesot affect
displays made with area fill (see -pattern-) or with -plot- and -move- (see -icons-). The font used for menus is not
under program control.

font family,height $%comma required
font "myfont", 20$$ user font

font zserif, 15 $$ default system font

font 3 reset to base font

The -font-commandselects a font from theamedfont family whose "newline" height is nlarger than the
specifiedheight in thecurrent (rescaled)coordinatesystem. The'newline" or "carriagereturn” height is the
distance from the top of one line to the top of the next line. The hisigbt the same as the "point size" often
used to characterize font#\ blank-tag -font- resets to the fotftat was active at thiéme a previousfine- or
-rescale- command was executed.

43

GRAPHICS & TEXT

Note that the -fontcommandets you specify fonts in eather generievay, andthe font size isspecified in
terms of screen coordinates, not point size. In contrast, the -fontp- command lets you choose a very specific font
and point size.

Several generifont family namesare recognized tdmprove the portability of program§hese names are
systemmarker variableshat can be used anywhetbat a font nhame&an be used@nd are recognized on all
systems:

zserif - astandard font with serifs (Times, except for New York on Macintosh)
zsans - a standard sans-serif font (Helvetica, except for Geneva on Macintosh)
Zfixed - astandard fixed-width font (Courier, except for Monaco on Macintosh)
zsymbol - a math symbol font (Symbol on all platforms)

A "sans serif" font is onwithoutthe little decorative marks such as the crook at the top of an "I" or the foot on
the bottom of an "f". A fixed-width font is one in which all characters use up the same width, thus letssing
of white space around "i" and very little white space around "w".

Unfortunately, even a "standard" font like Times is not exactly the same on all platforms, withdéfeybnces
in spacingbetweenletters, etc.This is the single mosterious problenwith porting cT programsfrom one
platform to anotherSee "Moving to Other Computers" for more discussion.

Note that the -fontcommand affectshe display of text when the programrisn. There is a preferencdie
ct.prfthat permits specifying what font to use in the program window for editing the program.

The selection of the font size is affected by ttescale-command. If rescaling of fonts is active (4tlgument
of -rescale- isTRUE), the fontchanges size abe displayspace availablexpands occontracts. For example,
-font "myfont", 20-producedext with acarriagereturn nogreaterthan 20 dots high when nescaling is in
effect. When rescaling iactive, -font "myfont", 20producestext with carriagereturns 20units highin the
conceptual system given by -fingVith fine 1000,1000-, fontescaling activeand anactual windowsize of
500 pixels by 500 pixels, a carriage return would be 10 pixels high.

Font rescaling

The -font- command scales using the newline size (i.e. how mgalriagereturn movesown). Therescaling
is done in "jumps": graphics scaling factors are constrained by the availability of font sizes. Any tevdulbat
go below the bottom text margin is clipped off.

In essence, the largest font that fits thiedow is chosen,andthen the graphics scalifgctors arechosen to
match the amount the text has actuatigcaledThis leaves a whitdorder aroundhe display, butensures a
close match between text and graphics. (Use a blank-tag -box- comnsamobtondthe graphicsarea,and you

will see a white border for most window sizes.) This scheme iperféct. ltdepends orthe constancycross

various font sizes of the ratio of the height of a linecludiracters tahe averagewidth of the (proportionally
spaced) characters. Occasionally, a few very wide characters such as "Wirovayhis off, if in thatparticular

font the "w" is proportionally a bit wider than it is in other font sizes.

The program cannotescaleitself every time a new font isintroduced. The -font- command that
determines scaling must come earlier than a rescale- and/or -fine- command A -font-
command that is not followed by -fine- or -rescale- is simply a short-term special-ptopbskangeand does
not affect scaling (a blank-tag -font- restores the base font). For example, either of the following will work:

font zserif, 15

fine 500,300
rescale TRUE, TRUE,TRUE,TRUE

44

DISPLAYING TEXT AND VARIABLES

rescale TRUE, TRUE,TRUE, TRUE
font zserif,15
fine 500,300

If the display space is very small, there may be no font available wioald allow the rescaling to adjust as
described above. In that case, the smallest available font is used and the message "NEEDYWWMDER" is
displayed at the lower left of the window. The text and graphics will not be in correct proportions.

For font rescaling to work, use the default font size for your basic text. If yolBmger" or "Smaller" styles
on all your text, font scaling probably won't work satisfactorily.

Rescaling is not the only way to deal with variable window sizes. Another way is owvidth andzheight

to detect when a window is too small, and display a message saying that you need a bigger windoothéfet
scheme involves using the values ofidth andzheightto tailor your display to use the available space. See
"An Example Program" for an example of this.

To move a font from Macintosh to Windows, use the Macintosh proitaa-DB andthe Windows programs
fdbpc, fpcwin, and fntfon as follows (these programs are supplied with cT):

Use the application MacFDB on the Macintosh to create an .fdb font.
Move the .fdb font to a Windows machine.

On Windows, execute: fdbpc my.fdb my.fpc

Execute: fpcwin my.fpc my.fnt

Execute: fntfon my.fnt my.fon or fntfon my10.fnt myl2rmt.fon
Then use the Windows control panel to install the font.

Some characters for less frequently used European languages are not available on a Macintosh spdesd the
"ISO" fonts distributed with cT are installed.

Examples:

The statement "font zserif,18" selects a font from the font fan@ipedzserif, such thatmeasured in current
coordinates, the newline height is 18.

unit xfontl

font zserif,18

fine 0,0; 300,200

rescale TRUE, TRUE, TRUE, TRUE

at 10,50

write "Y"and "y" using
-font zserif,18-.

box 10,50; 138,86

unit xfont2

at 30,50

write The dots show the character address
relative to the character itself:

font zserif,22

vector 50,100; 97,100; -10

dot 100,100

at 100,100

write Y

vector 150,100; 197,100; -10

dot 200,100

45

GRAPHICS & TEXT
at 200,100

write y
*

In the next example, notice that when the -finechiangedthe position (10,50) of the texhanges asvell as
its size. In a real program, such a change of -fineetisecommended.

unit xfont3
font zsans,15
fine 200,200
rescale TRUE, TRUE,FALSE,TRUE
at 10,50
write fine 200,200
fine 500,500
at 10,50
write fine 500,500
SeeAlso:
fontp Selecting a Specific Typeface (p. 46)
icons Selecting an Icon (p. 93)
pattern Making Textured Areas (p. 61)

rescale Adjusting the Display (p. 37)
Generic Font Names B27)
An Example Program (p. 5)
Moving to Other Computers (p. 21)

fontp: Selecting a Specific Typeface
The -fontp- command lets you choose a specific font and point size:
fontp "Helvetica", 48 $$ choose 48-point Helvetica, if available
After executing the -fontp- commarmheturn = TRUE if it actually sets to the font you specified, amdturn
= FALSE if the fontselected isnot exactly the one yowanted (due taunavailability of thatparticular font

and/or point size).

Note that the -fontcommandets you specify fonts in a mogenericway, andthe font size isspecified in
terms of screen coordinates rather than point size.

Unfortunately, even a "standard" font like Times is not exactly the same on all platforms, withdéfeybnces
in spacingbetweenletters, etcThis is the single mosterious problenwith porting cT programsfrom one
platform to anotherSee "Moving to Other Computers" for more discussion.

SeeAlso:
font Selecting a Typeface (p. 43)
Generic Font Names (B27)
Moving to Other Computers (p. 21)

46

DISPLAYING TEXT AND VARIABLES

show: Displaying Variables

The -show-command displaythe value of avariable or expression dhe contents of anarkervariable. The
-show- is sensitive to the type of information in its agmerical orcharacterstring), andselects thalisplay
format accordingly. This section deals only with numerical displays (the "See Also" dactiales areference
to using -show- to display marker variables).

show expression

show expression, significant figures

show expr, sig figsminimum

showz expression, sig figs $$ show trailing zeros (see below)

Whenthe one-argument form is usedefaultvaluesare usedor "significant figures"and "minimum." The
default number of significant figures is 4. The default minimum i'sg.lﬁny expression whose absolwalue
is less than 18 is displayed as 0 unless a different minimum is specified.

Very large and very small values are automaticdiplayedwith "scientific notation." (In scientifimotation,
1.19E+03 means 1190 or 1.1931)0You can force this "exponential” notation with a -showe- command.

There arawo special floating-point values that may bisplayed by ashow- commandINF (infinity) is
displayedwhen a nonzero valugas beerdivided by zero; NAN ("Not A Number") is displayedwhen azero
value is divided by zero, which might also be considered an "indefinite” result.

If the value would require additional digits to express the number, then it is displayed in scientific notation. This
depends on the number of significant digits that are displayed. For example:

<|s, 456, 2|> showg.6E+02
<|s, 456, 3|> shows 456

The -show- command does not show trailing zeros, so -sh?\s- displays "12", not "12.000". Theshowz
command does show trailing zeros. For detailed format control, use the -showt- command.

If you don't want to use the system defaults, you might set "significant figures" and "minimum" irdgine- -
set at the beginning of the program:

define i:MySigFigs =2
f: MyMinimum = 1E-12
show value MySigFigs, MyMinimum
Examples:
unit xshow
i: count
loop count:=1, 15 $$ count = 1,2,3,4, ,15
. at 50, 18count 3 space down 18 each line
show count
at 100,18count
. show sqrt(count) $$ square root
endloop
*
unit xshow?2
i: X, Y, yloc

47

GRAPHICS & TEXT

calc yloc:=0
loop X :=-20, 20, 4 $$ x =-20, -16, -12, etc.
. calc yloc :=yloc + 20
at 50,yloc
show X
at 100,yloc
. show 2%xy 3 2 to the power x
endloop
SeeAlso:
Embedding Variables in Text (p- 50)
show Contents of a Marker Variable (p. 250)

Using Embedded Marker Variables (p. 251)

showt: Specifying the Format

The -showt- command displays the value of a variable or expression in a fwitabte forproducingaligned
tables of numbers. (The "t" is for "tabular").

showt expression, left, right
showt expression, left
showt expression

The first argument of the -showt- tag is the variable or expression d@fiayed.The secondargument(“left")

gives the number of digits to allow to the left of the decimal. thivd argument ("right")gives the number of

digits to display to the right of the decimal. The right-hand digits are always displayed, even if they are zero. The
beginning of the displayed number is filled with spaces so that the decimals are aligned.

If "right" is omitted or zero, there are no digits to the right of theindal and nodecimalpoint is displayed. If
both "left" and "right" are omitted, defaultformat of 4, 3 is assumed: digits to the leftand 3digits to the
right.

If the number to be displayed requires more digits than are allowed by "leftletiraalpoint is movedout of
line. The -showt- never "refuses” to display a number.

When -showt- is embedded, it can be shortened to "t".

Examples:
unit xshowtl
at 100,50
showt 1357.2345, 5, 2
at 100,70
showt 9.999, 5, 2

*

The next example displays the values &i3¢or x running from 1 to 10. Notice that when left=5, it allows for
5 digits, leaving some space between the line and the actual beginning of the number. Whethdedt+2,not
enough space, so that the column is not nicely aligned.

unit xshowt2
fi x

48

DISPLAYING TEXT AND VARIABLES

i: left, right
draw 50,10; 50,250
calc left:=5 3 5 digits before the decimal
right:=2 $$ 2 digits after the decimal
loop x:=1,10
at 50, 20x
showt x"2.3, left, right
endloop
draw 200,10; 200,250
calc left ;=2 $$ 2 digits before the decimal
loop x:=1,10
. at 200, 20x
. showt x"2.3, left, right
endloop
SeeAlso:
Embedding Variables in Text (p. 50)
show Displaying Variables (p. 47)

showb: Displaying in Non-Decimal

The -showb-, -showo-, and -showh- commands display the value of a variable or exprebsiamnyinoctal, or
hexadecimal. These commarate usually usedwith byte or integer variables. If a floating-poinariable is
displayed, it is first rounded to an integer and then the integer value is displayed.

showb X $$ embed as <|b,x|>
showo X $$ embed as <|o,x|>
showh X $$ embed as <|h,x|>
showb X,8 $$ show 8igits
showo X,3 $$ show digits
showh X,2 $$ show digits

The first argument names the variable (or constant) tdidptayed.The secondargument gives the number of
digits to display.

If the secondargument is omitted, the number of digilisplayed is"enough digits to display thenaximum
value that can be stored in that type of variable." For integers, -showb-, -shodehowh- display32, 11,
and 8 digits, respectively. For bytes, they display 8, 3, and 2 digits.

If the second argument is 0 or less, nothing is displayed. If the second argutaegérithan thedefaultvalue,
it causes an error.

Example:
unit xshowol
i: N
at 5,5
write decimal hex octal binary
at 5,25
loop N :=1, 1000, N+1
write <[t,N,3]> <[h,N|> <|o,N|> <|b,N|> <|cr|>

49

GRAPHICS & TEXT

endloop

SeeAlso:
Embedding Variables in Text (p. 50)
show Displaying Variables (p. 47)

Embedding Variables in Text

The embedded form dhe -show-commandallows anyvariable to be displayed agart of a -text-, write- or
-string- statement. Theariable is evaluatedand its value is displayed aspart of the text. Theesmbedded

command iswritten <|command,variable|>. All of the show-tyg@mmandsnay beembeddedEach may be
abbreviated to a single letter:

write X is <|show, Xx|> $$ "s"
marker is <|show,m1|> $$ "s"
binary is <|showb,x|> $$ "b"
octal is <|showo,x|> $$ "o"
hex is <|showh,x|> $$ "h"

formatted: <|showt,x,5,3|> $$ "t"
<|cr|>, <|tab]>, <|quote|> $$ special characters

Consider this -write- statement:

write | have <|show,N|> apples
and <|show,p+3|> peaches.

If N=12 and p=19, it will display

| have 12 apples
and 22 peaches.

The example above is (essentially) equivalent to

write | have

show N

write apples
and

show p+3

write peaches.

When an embedded show is used, all of the information for the sentence is inclodeehirite- statement, that
is, in one commandstatement.When explicit -show- commandsare used, it requires severacommand

statements to display the same sentembés difference isimportant in response judging afrow-s), because
only one text-display statement is automatically erased after a response is finished.

Examples:
unit xembed
i: peaches, apples
randu peaches, 5 $$ select value from 1-5
randu apples, 10 $$ select value from 1-10
at 50,100

50

write

*

DISPLAYING TEXT AND VARIABLES

| have <|s,peaches|> peaches and <|s,apples|> apples.

The next example uses embedded -show- commands to display variable conteasbdddedorms <|quote|>,
<|cr|>, and <|tab|> are used to insert double-quoaesage-returnand TAB. Note how the form of theshow-
changes the display of the numbers ("s" vs. "t").

unit

set
calc
at
write
at
write

at
write

SeeAlso:

xembed2

f. A(6)

m: phrase

A :=1.011, 3, 5.7, 4567, 902, -27

phrase := "hello"+<|cr|>+"hello"+<|cr|>+"hello"
30,30

<|s,phrase|>

30, 100
<|s,A(1)|><[tab|><|s,A(2)|><|tab|><|s,A(3)|>
<|s,A(4)|><[tab|><|s,A(5)|><[tab|><|s,A(6)[>
30, 150

<[t A(1)|><[tab|><|t,A(2)|><|tab|><|t,A(3)|>
<[t,A(4)|><[tab|><|t,A(5)|><|tab|><]|t,A(6)|>

Using Embedded Marker Variables (p. 251)

show
string

Contents of a Marker Variable (p. 250)
Text in a MarkeWariable (p.248)

51

GRAPHICS & TEXT

Lines, Circles, Boxes, Etc.

draw: Drawing Lines
The draw- command displays continudohes. The argument is aeries of screenpositions separated by
semicolons. Coarsgrid andfine grid addressesnay bemixed in the command. Thevord "skip" indicates a

break in the figure.

draw 10,20; 100,20; skip; 50,6@0,90
draw ;200, 150 $$ draw from current position

If the -draw- starts with a semicolon, the drawing starts fronctinent screemosition. Thecommand inhibit
startdraw- is useful when starting a series of continued lines.

The thickness of the lines can be specified with a -thick- command.
Examples:
This example draws a right triangle whose base is at the top and whose tip is at the lower right:

unit xdrawl
draw 100,100; 200,100; 200,300; 100,100

*

This example uses the system varialzbesin,zymin, zxmax,zymaa draw using the fulvindow:

unit xdraw2
draw Zxmin,zymin; zxmax,zymax
draw zxmax,zymin; zxmin,zymax

*

Unit "xdraw3" usesskip in the first draw- command todraw disconnectedines. Thelater draw-s are
"continued" to display several connected lines.

unit xdraw3

draw 40,100; 40,200; skip; 80,100; 80,200
draw 200,0; 150,50

draw ;200,100; 150,150

draw ;200,200; 150,250

*

In "xdraw4", afterthe dot- is displayedthe systenmvariableszwherexandzwhereyareset tozwherex=50 and
zwherey=100. Thewherexandzwhereyare not updateduntil after astatement is completed, so the following
-draw- statements are equivalent:

unit xdraw4

dot 50,100

draw 10,20; zwherex-5,zwherey-5; 230,40
pause $$vait for keypress
mode Xor $&hange modes

draw 10,20; 45,95; 230,40

*

52

LINES, CIRCLES, BOXES, ETC.

SeeAlso:
thick Line Thickness (p. 62)
System Variables for Graphics and Mouse 3@i)

inhibit/allow startdraw (p. 66)

dot: Making Dots

The -dot- command displays a single ddultiple dotscan be dispiedwith one command bygiving several
points, separated by semicolons. If the tag starts with a semicolon, the first dot is displayetliatttiscreen
position.

dot 150,150
dot ; 75,50;75,75

The -dot- command with one point is equivalent to a -draw- command with a single position:
draw 150,150

The thickness of the dot can be specified with a -thick- command.

Example:
unit xdot $$ display a row of thick dots
iin
thick 3
loop n := 50,150, 5
dot n,100
endloop
SeeAlso:
thick Line Thickness (p. 62)

circle: Drawing Circles and Arcs

The -circle- and -circleb- ("broken circle™) commands are used for displaying circles, arcs, and ovals:

circle radius $&ircle centered on current screen position

circleb radius $Proken or dashed circle centered on current screen position
circle radius, anglel, angle2 $$ circular arc centered on current screen position
circle x1,y1; x2,y2 $$ oval bounded by the specified rectangle

When drawing a circle centered tite curent screerposition, the firstargument of the tag gives thadius of
the circle. The optional second and third arguments specify the begemdmdingangles fordrawing partial
circles (arcs). The partial circle (arc) is drawn from the smaller angle tlartier angle, inclusiveregardless of
the order in which the angles are specified.

The angles are normally measured in degrees, increasing in the same direction that y increases. Tmjlés, the

increases in the direction determined royating the positive x-axitowardthe positive y-axis. If 0,0 is in the
upper-left corner othe displaywith y increasing as you move down, the anglensasurectlockwise In the

53

GRAPHICS & TEXT

graphing coordinatesystem, y is usuallydefined to increase upwardsand the arc anglesare measured
counterclockwise.

The command -inhibit degree- changes to radian measure for the arc angles. Using radians is often convenient for
consistency with the radians that are always used in the trigonometric functions (sine, cosine, arctan, etc.).

To draw an oval, specify the corners of a rectangle that the oval would fit inside.

After a circle is complete, the screen position (zwherex,zwherey) is set to the centarimféhifor anoval, to
the upper-left corner of the bounding rectangle). If a partial circle (arc) is drawstrédemposition is set to the

last point on the arc.

The thickness of theircle is affected bythe -thick- command. See the -thidemmand forissues thatarise

with circles that have large thicknesses.

Example

unit
at
circle
thick
circleb
thick
circle
*

unit
at
circle
at
circle
draw
at
write
at
write
draw
at
write

*

SeeAlso:
disk
thick

xcircle

100,100 $Bet center of circle

50 $$radius 50

2

75 $%adius 75; thick dashes

60,80;140,120 $$ oval

xcircle2

70,100 $%et center of arc
50, 45, 270 $$ arc from 45 to 270 degrees
70,100 $$nust reset center

60, -90, 45 3 arc from 270 to 45 degrees
170,100; 70,100; 150,180

175,95

Odegrees

155,175

45 degrees

70,100; 70,20

75,15

270 degrees

Filling a Circle (p. 57)
Line Thickness (p. 62)

inhibit/allow degree (p. 70)

vector: Line with Arrowhead

The -vector- command displays a line with an arrowhbatican have ampenhead or aclosed headThe head

size can vary.

vector
vector

54

tailX,tailY; headX,headY
; headX,headY; headtype

LINES, CIRCLES, BOXES, ETC.

If the tag starts with a semicolon, the tail of thextor is at theurrent screemosition (zwherex, zwherey).
After a -vector-, the current screen position is set to the point of the vector.

The optional head type specifies the type of vector dragthe size of thearrowheadThe sign of "headtype"
determines whether a closed apenarrowhead igdisplayed. Wherthe headtype is positive or omitted, the
arrowhead is a filled triangle. When the head type is negativarttvhead is formed bywo angledlines--the
head is "open." If the vector is shorter than the standard head, cT shrinks the head to fit.

Whenthe headtype is an integer, it specifies the length of #newhead inscreenunits. If theheadtype is
omitted, the length of the arrowhead is about 20 screen units. If the head type is a fraction, the length is not an
absolute value, but is that fraction of the length of the vector's length.

When a -pattern- command is in effect, a closed vector head is textured rather than solid.

The thickness of the vector shaft can be specified with a -thick- comfmandpte that you may also want to
increase the head size to match the thicker shaft.

Examples:
unit xvector
vector 25,50; 225,50 $tlefault head size

vector 25,100; 225,100; 60 $30-dot head size
vector 25,150; 225,150; -30 $$pen head
vector 25,200; 225,200; .5 $%ead size depends on length

*

In this example, the -rvector- command starts with a semicolon, so that the start (tail) of each vector is the point
of the previous vector.

unit xvector2
f. angle
rorigin 130,150
rat 100,0 $$tart of first vector
loop angle := 0,360,30
rotate angle
rvector ;100,0
endloop
SeeAlso:
pattern Making Textured Areas (p. 61)
thick Line Thickness (p. 62)

box: Making a Rectangle

The -box- command is used for drawing rectangles.

box x1,y1;x2,y2

box x1,y1; x2,y2; thickness
box :X2,y2; thickness

box $$ available display area

55

GRAPHICS & TEXT

The screen positions in the tag of -box- give diagonally opposite corners m&fcthrgle to be displayed. If the
first position is omitted, one corner of the box is the current screen position (zwherex,zwherey).

The "thickness" argumertausesthe outline of therectangle to be'thickness" screenunits wide. If the
"thickness" argument is positive, the thickness is added to the outside of theebtsigle; ifthe argument is
negative, the thickness is developed inwards. The thickness of the lines of thantadso bespecifiedwith a
-thick- command, in whicltasethe thickness is the number of pixetstherthan (possiblyrescaled) screen
units.

When a -pattern- is in effect, a thick box is displayed with that pattern.

The blank-tag form of -box- draws a frame around the region specified by a -fine- confimaradank-tagiorm
of the graphing box command, -gbox-, draws a frame around the region of the graphing axes.

After the rectangle is drawrthe current screemposition (zwherex,zwherey) iset to the first pointmentioned
("cornerl").

Examples:

Note that the three boxes are of the same basic size (100 x 50).

unit xbox

box 50,50; 100,150

box 150,50; 200,150; 15 $$ thickness grows outward
box 250,50; 300,150; -7 $$ thickness grows inward

*

This example shows a box in thelative coordinatesystem. The walls of the boare of uneven thickness
because one screen unit in the "x" direction is three times as large as one screen unit in the "y" direction.

unit xbox2

rorigin 100,50 3 set relative origin

size 3,1 $$%xpand x units

rotate 30 $Botate axes around 100,50

pattern zpatterns, 7 $$ set fill pattern for edges

rbox 0,0; 100,100; -10 $$ thickness 10 units inward

size 1 $hack to default size

rotate 0 $dack to default rotation
SeeAlso:

Describing the Screen (p. 34)

Current Screen Position (p. 323)

pattern Making Textured Areas (p. 61)
thick Line Thickness (p. 62)

fill: Filling an Area

The -fill- command fills in a polygon whose corners are specified by the arguments of the tag.

fill x1,y1; x2,y2 $$rectangle
fill x1,y1; x2,y2; ... ;xN,yN
fill 3 full-screen fill with existing -pattern-

56

LINES, CIRCLES, BOXES, ETC.

If the tag of the -fill-commandonly has two pointsspecified, as irthe first line above, itdraws afilled-in
rectangle. If there are more than two points specified, the result is as if thosewmmtsliraw-ing digure and
then filling it in. The final point, which closes the figure, does not need to be specified.

The -pattern- command may be used to specify a pattern for the -fill-. The default pattern is solid black-: A
tag -fill- fills the entirewindow (like a blank-tagerase)using thecurrentpattern, which is useful fogiving
texture to the window.

After the figure isdrawn, the current screemposition (zwherex,zwherey) iset to the first pointmentioned
("cornerl") .

The following sequence of triangular -draw- and -erase- statements leave the lower-right slanted line intact:

draw 10,10;176,10;10,180; 10,10
erase 10,10;176,10;10,180 $$ same area as a -fill-

This is because a nonrectangular -fill- erase-goes tojust inside the bottomandright sides ofthe polygon,
and this -draw- is just outside the filled region.

Example:

unit xfill

fill 50,50;150,100 $$ectangle

fill 50,200; 75,150;130,130; 175,250 $$ 4-sided polygon
SeeAlso:

erase Erasing an Area (p. 58)

pattern Making Textured Areas (p. 61)

disk: Filling a Circle

The disk- commandlisplays a filled-in circle opval. The pattern- command issed tomake atexturedfill
instead of a solid color fill.

disk radius $$ circular disk centered at current screen position
disk x1,y1; x2,y2 3 oval disk bounded by specified rectangle

With one argument specifying the radius, tenter ofthe disk is at thé'current screerposition”. An -at-
command is usually used to specify curretrieenposition. Withfour arguments, the disk isféled oval that
lies inside the specified rectangle.

After the disk is complete, the screen position (zwherex,zwherey) is set to the centércafaadisk, or at the
upper-left corner of the bounding rectangle for ovals.

Examples:
unit xdiskl
at 100,100
disk 50 $<circle
disk 30,150 ;170,180 $3% oval
*

57

GRAPHICS & TEXT

The second example shows patterned disks. Sometimes a disk looks better if it is outlined.

unit xdisk2

pattern zpatterns, 13

disk 50,80; 150,120
pattern zpatterns, 6

at 200,100

disk 75

circle 75 $%outline disk

*

Although partial disks are not available directly, tharetricks onecanuse.Half-disks or quarter-disks can be
achieved by using -clip-.

unit xdisk3 $Ppartial disk with clip

clip 50,50; 300,150

box 50,50; 300,150 $$ show clipped region

at 50,100

disk 50 $$right half of a disk

at 200,50

disk 50 $$bottom half of disk

at 300,150

disk 50 $$ quarter disk

clip 3 don't forget to cancel the clip!

An -erase- can be usedr@movepart of a disk.

unit xdisk4 $Ppartial disk with erase
at 150,100
disk 50
erase 176,44, 150,100; 97,69
SeeAlso:
pattern Making Textured Areas (p. 61)

erase: Erasing an Area

The -erase- command clears a region of the display. It erases a polygon (like -fill-) whose corners are specified by
the addresses of the tag.

erase x1,y1; x2,y2 $$rectangle
erase 2,y1; x2,y2; ... XxN,yN
erase $®rase entire display

If the tag of the -erase- command has two screen positions specified, it clears a rectangular areardfrioeee
than two points specified, tharea erased is polygon whosecornersare specified bythe addresses ahe tag.
The final point, which closes the figurdgesnot need to bespecified.The erasureregion isrestricted to the
display areadefined bythe fine- command. Aftethe erase-<command is executethe current screeposition
(zwherex,zwherey) is set to the first point mentioned in the tag.

58

LINES, CIRCLES, BOXES, ETC.

The -erase- command &ffected bythe pattern- command, areall commandghat display dilled area. If a
-pattern- is in effect, the -erase- removes only those dots that would normally be "turned on" when the pattern is
displayed.

The blank-tag erase-clearsthe entire window, including thareaoutside the fine- area. It isunaffected by a
-clip-. The color is specified by the -wcolor- command. If moolor- commanchas beerexecutedthe color is
the default background colardefaultb.

The following sequence of triangular -draw- and -erase- statements leave the lower-right slanted line intact:

draw 10,10;176,10;10,180; 10,10
erase 10,10;176,10;10,180

This is because a nonrectangular -fill- erase-goes tojust inside the bottomandright sides ofthe polygon,
and this -draw- is just outside the filled region.

NOTE: If the tagdoesnot give twoscreenpositions, it is a form oferase- includegartly for compatibility
with systems that us&oarsegrid". Character widtrandheight are specified byhe width of an "n"and the
height of a line (or they are specified by a -coarse- command).

erase characters $%chHars to erase
erase characters,lines $$ for several lines
Examples:

These two units illustrate how the same effects can be achieved with either -erase- or -mode erase-.

unit xerase
fill 50,50; 300,200 $$ make a solid rectangle
erase 80,80; 150,100; 100,170 $$% erase a triangle
erase 200,80; 250,160 $$ erase a rectangle
unit xmode
fill 50,50; 300,200 $$ make a solid rectangle
mode erase
fill 80,80; 150,100; 100,170 $Biangle
fill 200,80; 250,160 $$ectangle
mode write
SeeAlso:
clip Limiting the Display Area (p. 63)
mode Changing Modes (p. 60)
pattern Making Textured Areas (p. 61)
wcolor The Window Color (p- 79)
Inhibit and Allow in Judging (p. 177)

59

GRAPHICS & TEXT

Mode, Pattern, Thick, Cursor, & Clip

mode: Changing Modes

The -mode- command changes the way a graphics or text display command is treated.

mode write
mode erase
mode Xor
mode rewrite
mode inverse

The mode isalways set torodewrite- when entering a new maimit. In mode write-, any newdisplay
appears on top of the existing display. In -mode erase-, what would have been writteforegtioeindcolor is
written in the background color.

In -moderewrite-, the -text-and write- commandserasethe area(filling with the backgroundcolor) before
displaying the newext. A pattern -fill- displays the pattern in ttieregroundcolor andthe otherareas in the
background color. The -mode inverse- is like -mode rewrite-, but with the colors reversed.

In -mode xor- ("exclusive or") the color of each displapéc! is reversedrom its currentcolor in such a way
that precisely repeating this graphics operation restorescteen toits original form. This is usefubr such
things as "rubber-banding" a line or moving an icon across other objects.

The actual color of an object displayed in -mode xor- is not welldefined.

Typically, the color of an object irmodexor- is unpredictableand completelyindependent ofyour foreground
and backgroundcolors, even whendrawing on aregion filled with the backgroundcolor. But there is
reversibility: doing two -mode xor- displays in the same color at the same place always resteceseti¢o its
original appearance.

The system variablemodetells what the current graphics mode is (as set by the -mode- command).

Examples:
unit xmodel
mode write
at 35,20
write This is in -mode write-.
mode inverse
text 50,50;400,130
The black area surrounding this inverse -text- extends to the right margin and to the end of the sentence.
\
mode write $$ be sure to return to "write" !
*
unit xmode2
at 35,50
write Notice that the lines from the -draw-

60

are black outside the filled area and
white inside it.

fill 104,173:68,143;164,126;142,163;202,227;75,234
mode Xor
draw 111,117;68,173;139,244;182,165;110,117

MODE, PATTERN, THICK, CURSOR, & CLIP

mode write

*

unit xmode3

draw 88,15;288,176

do xmode3a $Bhow some text
pause

mode erase $frepare to erase

do xmode3a $$emove the text

mode write 3 return to -mode write-
*

unit xmode3a $$ make a little display

at 55,40

write When -text- or -write- is displayed in -mode- erase,

the letters are removed.

Notice how the line through the text is affected
when you press a key.

SeeAlso:
zmode Current Mode (p. 324)
erase Erasing an Area (p. 58)
clip Limiting the Display Area (p. 63)
Inhibit and Allow in Judging (p. 177)

pattern: Making Textured Areas

The -pattern- command specifies an icon or character whose pattern is used to fill areas in the -filldiskgx-, -
-erase-, -vector-, -vbar-, and -hbar- commands.

pattern zpatterns,9
pattern "mypatterns",5
pattern $dblank tag returns to default

The first argument of the tag names a file that contains an icon setse€brdargument is thecharacter
number within that set of the selected pattern. The default fill pattern is all dots on; that is, solid.

The icon setpatternsis a generic set that is available on all machine types. In this set, patterns 0 through 16
are 4 by 4patterns containing 0, 1, 2,15, 16 dotsThis makes iteasy to choose algorithmically among
different densities of patterns.

You can usdcon Makeron the Macintosh dcon.ton other platforms to create your own patterns. Note that in
Icon Makeryou must specifically mark an icon as being usable as a pattern.

The -pattern- command allows character numbers from 0 to 126.
The cT sample prograshowicon.tisplays all the patterns in an icons aetlshows the numericalode (0 to

126) for eachpattern. To use pattern numt#f, useeither -pattern filename,97- or -patteffilename,zk(b)-
(since the character "b" has numerical code 97).

61

GRAPHICS & TEXT

Example
unit Xpattern
pattern zpatterns,8 $$ gray
fill 50,50; 300,150
pattern $3 return to default (black)
box 50,50; 300,150; 20
SeeAlso:
Making Icons on Macintosh (p. 95)
Making Icons on PC &Jnix (p. 96)

Generic Font Names B27)
File Name Specification (p. 286)

thick: Line Thickness

The -thick- command makes later line-drawn commands use thick patterned lines:

thick 4 $$ 4 times normal thickness, affected by -pattern-
thick $$ turn off thickoption
thick 0 $$ turn off thicloption
thick 1 $$ turn off thickoption

When a thickness N greater than 1 is in effect, lines are drawn as though the center of a filled-in square of size N
by N were dragged along the path of the line. This ensures that a sequeaneeatedines join appropriately,
butverythick circles may not appear as you would like (a very thiokle can becreated by adisk- command

followed by a smaller concentric -disk- in a different color).

Line-drawn commands affected by a preceding -thick- command indhacte, circle-, -circleb-, -dot{useful for
plotting dots on a graph), -draw-, -vector- (but note that you may also wantréasethe headsize tomatch
the thicker shaft), -axes-, -labelx/y-, -markx/y-, and the corresponding graphing and relative graphics commands.

Example:
unit xthick
thick 6
pattern Zpatterns,12
color zblue
draw 35,30;70,65;35,100;35,30
color zred
vector 50,65;200,65
dot 210,65
*

cursor: The Mouse Pointer

The -cursor- command allow®u to changethe pointer that movearound onthe display when the mouse is
moved. The usual (default) pointer is a small, slightly curved arrow that points upward to the left.

cursor zcursors,zKk(f)

62

MODE, PATTERN, THICK, CURSOR, & CLIP

cursor zcursors,3 3 invisible cursor

cursor zcursors,72 $$ watch cursor (indicate waiting)
cursor "myobjects",zk(O)

cursor $dblank tag returns to default

The first argument of the tag names an icon set. The second argument is the character number within that set of
the selected pattern. The icon setirsorsis a generic set that is available alh machinetypes. Youcan use

Icon Makeron the Macintosh dcon.ton other platforms tareateyour own cursors. Note that iison Maker

you must specifically mark an icon as being usable as the mouse cursor.

Example
unit xcursor
i: ncursor
at 10,10
write Note: If the cursor is the standard
one when you press a key, there is
no cursor associated with that index.
loop ncursor := 0, 127
cursor ZCUrsors,ncursor
erase 60,70; 100,100
at 60,70
show ncursor
pause
cursor 3 restore standard cursor
endloop
*
SeeAlso:
Making Icons on Macintosh (p. 95)
Making Icons on PC &Jnix (p. 96)

Generic Font Names B27)
File Name Specification (p. 286)

clip: Limiting the Display Area

The -clip- command establishes a rectangular area of the display. Any trawimgthat would fall outside of
this area is not shown.

clip 100,100;300,300
clip 3 blank-tag cancels clipping

The -clip-command doesot changethe current screemosition given byzwherex, zwhereyClipping is not
reset on entry to a new main unit.

The -rclip- and -gclip- commands take relative gndphing coordinatequt -rclip- clips a horizontatectangle,
unaffected by -rotate-.

NOTE: Clipping applies to allgraphics commands othénan -button-, slider-, and -@it-, and only one
clipping region may be ieffect at atime. Thus a -gclip-affects commandfrom the absoluteand relative
coordinate systems as well as those from the graphing system. You cannot simultam@ezigly-clip-and a
-gclip- in effect; the most recent one overrides earlier clips.

63

GRAPHICS & TEXT

Graphics objects (-button-, -slider-, and -edit-) cannot be created if a -clipeffeanthat would obscure part of
the object, and these objects are unaffected by later -clip- commandgliplhegion is temporarilyesetwhen
these graphics objects are manipulated.

Example:

The -gclip-command is particularlyseful with graphs, tensurethat the graptdoesnot go all over the
display:

unit xclip
f: x
gorigin 40,170
axes 0,-50; 300,150
scalex 360
scaley 3
labelx 90,45,1
labely 1,051
gclip 0,-1; 360,3
gat 0,0
loop x:=0, 360, 5
. gdraw ;X, .01x +sin(x/15)
endloop
gclip
SeeAlso:
at Positioning Graphics (p. 34)
inhibit/allow display (p. 67)
mode Changing Modes (p. 60)

64

INHIBIT AND ALLOW IN GRAPHICS
Inhibit and Allow in Graphics

-inhibit- and -allow- in Graphics

The -inhibit- and -allow- commands modify various default behaviors. The tag is a keyword nantiebatier
to be modified.

inhibit startdraw
inhibit startdraw, degree $$ combined keywords ok

inhibit $$ blank tag; reset to defaults
allow $$% blank tag; reset to defaults

There may beseveral inhibit- and/or -allow- commands ine unit; the resultsre cumulative. Several
keywords may be combined in one tag. The following keywords are available as tags for -inhibit- with respect to
graphics (in addition to the inhibit optioasiserasearrow, andblanks for judging):

erase 3 do not erase on new unit

startdraw 3 do not shotirst -draw- output

display $$ do not display output

update $$ do not update screen immediately

objdelete 3 do not delete graphics object on -jump-
optionmenu 3 do not display Option menu

buttonfont $$ do not use system font for button text

supsubadjust 3 do not adjust text positioning with sup or sub
degree 3 do not use degrees with -circle-, -rotate-, -polar-
fuzzyeq 3 do not use "fuzzy zero" in comparisons

When thesdagsare usedvith -allow- all of the"do nots" are changed t8do". The effect of an inhibit- or
-allow- lasts until it is canceled by one of these actions:

1) a blank-tag -inhibit- or -allow-
2) a specific -inhibit- or -allow- command
3) the beginning of a new main unit

The blank-tag -inhibit- and the blank-tag -allow- have sheeeffect. All of their optionsare changethack to
the default status, as if these commands had been executed:

inhibit blanks
allow anserase, arrow, erase, startdraw, display
allow update, objdelete, supsubadjust, degree

The keywordresetcan be used to reset to the default options:

inhibit reset, erase 3 set to defaults, then -inhibit erase-
SeeAlso:
Inhibit and Allow in Judging (p. 177)

65

GRAPHICS & TEXT

inhibit/allow erase

This command modifieshe full-screen eraséhat usuallyoccurs when entering a nawain unit. Thedefault
status is -allow erase-.

Normally, the entire display is erased when the user enters a nevunilalny pressing ENTER, bgelecting
(Next Page)or (Back), or when the program goes to a nemit with -jump-. The -inhibiterase- prevents
this automatic erasure.

Example:
unit xInhibitErase0 3 use "Run from Selected Unit"
do circles $kircles
inhibit erase $3&ry removing this line
jump xInhibitErase
*
unit xInhibitErase
at 160,35
write Now in unit
xInhibitErase.
*
unit circles $$ agroup of circles
i r $$ circle radius
loop r:=75,175,25
at 200,r
circle r
endloop
*

inhibit/allow startdraw

The "startdraw"tag on -inhibit-causeghe first elementof the next draw- or move- commandNOT to be
displayed. When "startdraw" has an argument, the first element of the next N -draw- or -move- commands is not
displayed. The default status is -allow startdraw-.

inhibit startdraw
inhibit startdraw(N)

When a display such as a graph or an animation is lygingrated by &op, the first item must oftehave
special treatment. The -inhibit startdraw- was designed to simplify lebpse draw- and move-are usedvith
initial semicolons to indicate "start from previous location."

Examples:

At the beginning of every main unit, the "current screen position" is set to 0,0. If -istailitraw- isomitted
from this example, an extra line is drawn from 0,0 to the beginning of the arc.

unit xstartdraw ~ $&how a parabola
fri, x,y
inhibit startdraw $$ try it without this line
loop i :=-100,100,10 $$i=-100, -90, ... 90,100
. calc X :=i+150
y = i*i/100

66

INHIBIT AND ALLOW IN GRAPHICS

. draw XY
endloop

When -inhibit startdraw- isisedwith the move- command, the first -moveemmand afterinhibit startdraw-
does not erase the "from" location. Thus, the first iteration of the -noowemand inthis loop merely writes
into the "to" location. Without the -inhibit startdraw-, an extra O is shown, right after the word "box."

unit xstartdraw?2
f: x
fill 142,87;224,120 3 a solid box
at 50,20
write Watch the letter move
through the box.
inhibit startdraw $$ try it without this line
mode xor $$flip dots" graphics mode
loop X := 100, 250, 2
move icons: ; x,100; zk(O)
pause 1 $$low it down
endloop
mode write $$ normal graphics mode

*

Do not mistake thdirst elementfor the entire command. The next example illustrates the treatment of an
ordinary -draw-. The first line of each -draw- is suppressed.

unit xstartdraw3

inhibit startdraw(3) $3ry it without this line
draw 50,50; 50,100; 100,100 %Baws an "L"
draw 150,50; 150,100; 200,100

draw 250,50; 250,100; 300,100

*

inhibit/allow display

This command modifies the normal display of output. The default status is -allow display-.

Occasionally it is useful to know what the current screen position would have been if a dijtegn plotted
without actuallyplotting the display. The -inhibidisplay- prevent®utput ofdisplay commands. Itoes not

stop these commands from executing; all processing is normal except the final step of output to the screen.

The -inhibit display- command islso used tomake the input at ararrow- "invisible,” as might beused for
entering a codeword. The input is still processed; it just isn't visible.

Example:

This example illustrates a lazy way to draw a line at a specific angle. It "draws" an arc but ddieplapit. It
then draws a line from the end of the arc back to the center of the circle.

unit xInhibitDisplay

inhibit display

at 100,100

circle 50, 0, 135 $% arc to 135 degrees
allow display

67

GRAPHICS & TEXT

draw ;100,100;140,100
at 100,112
write This angle is 135 degrees.

*

inhibit/allow update
This command modifies the normal display of output. The default status is -allow update-.

inhibit update $$ delay output
allow update $8pdate the screen

Normally cT takes pains tensurethat the displayappears orthe screensmoothly, ratherthan in spurts. The
statement "inhibit update" causes the (computer's) instructions srréen to be accumulated irbaffer. An

"allow update" sends the entire buffer to the display program. NOTE: A very extensive display may overflow the
display buffer, which forces the display to update.

Notice thedifference betweenthe "update” and "display"” tags for -inhibit-and allow-. An -inhibit display-
calculateshe display informationbut never sends it tohe display buffer. Withinhibit update-,the display
information reaches the display buffbyt is not sent to thecreendisplay progranuntil an -allowupdate- is
issued.

Example:

Try this example with and without the -inhibit update- line.

unit xupdate

f. angle
gorigin 200, 100 $Prepare for graphing
bounds -150,0; 150,150 3 set axes, no display
polar TRUE 3 use polar coordinates
scalex 15 $%et scaling
scaley 15
inhibit update $3urn off screen updating
loop angle := 0, 1800, 15

gdraw ;angle/200, angle
endloop
allow update $&how accumulated display
polar FALSE $$restore X,y coordinates
*

inhibit/allow editdraw

You cantemporarily prevent updating tleereendisplay in an edit panehat would normally occur as you
change the associated marker text:

inhibit editdraw $$ don't update edit panel display yet
allow editdraw $$ now update the edit panel display

This can be useful when you make lots of changes to theameixtant them all toappear orthe screenall at
once rather than one at a time.

68

INHIBIT AND ALLOW IN GRAPHICS

inhibit/allow objects

You cantemporarily prevenbutton, slider, editpanel, and video controllerobjects from processing events.
Events which occur while -inhibit objects- is in effect are discarded.

inhibit objects $$ stop processing "object" events
allow objects $$ resume processing "object" events

This can beuseful when yoware executing some critical statemerisddon't want to beanterrupted by user
inputs.

inhibit/allow objdelete

Normally a -jump- automatically destroys existing edit panels, buttons, sliders, and touch regions. With -inhibit
objdelete- you can prevettiis automatiadestructionandthis also inhibits the normally automafidl-screen
erase:

inhibit objdelete
jump somewhere
allow objdelete

For the undestroyed objects to function, their associated variables haveltibdlevariables. If theseariables
are defined as local variables in the originalt, the object informatioicannot bepreservedevenwith -inhibit
objdelete-.

inhibit/allow optionmenu

cT normally creates an Option menu, refcreates a®ption menu when -next- oback- or -arrow- are active
(or -pause keys=next-). You can permanently remove the Option menu with -inhibit optionmenu-:

inhibit optionmenu 3 remove Option menu (and do not re-create it)
allow optionmenu $$ restore Option menu

Caution! The option to quit running thprogram is normally on the Option menu. If ydeletethe Option
menu, you should offer another way out of the program, like this:

menu Special; Quit: GetOut $$ make your own "Quit" option
inhibit optionmenu $$ delete the Option menu

unit GetOut

jumpout 3 quit the program

inhibit/allow buttonfont
Normally cT uses a special system font for the text displayed in a button, but you can inhibit this:

allow buttonfont $$ use special system font for button text (default)
inhibit buttonfont $$ use current font (set by -font- or -fontp-)

Normally styles such as subscript or itadie ignored indisplaying the text of a button, but with -inhibit
buttonfont- in effect, the displayed button text can contain styles and can even contain pasted-in images.

69

GRAPHICS & TEXT

SeeAlso:
button Buttons to Click (p- 142)

inhibit/allow supsubadjust

Normally, in order to fit within vertical margins, text is moved down if there is a supersamgbtaline is also
moved down ifthe precedingline contained asubscript.There is aninhibit- option thatcauses cT to ignore
superscripts/subscripts when aligning text in -write- or -text- statements:

unit xsupsubadijust

draw 10,100; 240,100

at 10,100

write Ho0 and ¥ moved down from upper margin,
and this line is moved down even more.

inhibit supsubadjust

draw 10,170; 240,170

at 10,170 $$ upper margin aty = 170

write HoO and »® not moved down; clipped,
and this line is not adjusted.

draw 10,240; 240,240

atnm 10,240 $$ no upper margin

write Ho0 and ¥ not moved down:; not clipped,
and this line is not adjusted.

allow supsubadjust

*

This currently has no effect on edit panels.

SeeAlso:
supsub Super/subscript Height (p. 43)

inhibit/allow degree

Angles in eircle- arcs, -rotate-and polar- coordinategre normally measured in degredsiit you can inhibit
degrees and use radians instead:

inhibit degree $%ise radians in -circle-, -rotate-, and -polar-
allow degree $%ise degrees in -circle-, -rotate-, and -polar- (default)

Using radians in these commands is often convenient for consistency with the radians that are always used in the
trigonometric functions (sine, cosine, arctan, etc.). The specificatiamhitfit/allow degree isnot reset by a

new main unit. For example, a single -inhibit degree- in the initial entry(liti}) is sufficient to turn off the

use of degrees throughout the entire program.

Example:

unit xdegrees
* Draw a pie-shaped figure.
f: ANGLE=0.7 $$% angle in radians
inhibit degree
draw 50,50; 150,50

70

INHIBIT AND ALLOW IN GRAPHICS

atnm 50,50

circle 100, 0, ANGLE $$ angle in radians

draw 50+100cos(ANGLE),50+100sin(ANGLE); 50,50
SeeAlso:

Trigonometric Functions (p. 202)

inhibit/allow fuzzyeq

In making logical comparisons such as "if x > y" involving floating-point numbers, cT normally vfezya
zero" so that tiny differences due to the accumulatioroomdoff errors areonsidered to be equal ®ro. You
can inhibit this "fuzzy zero" or "fuzzy equal":

inhibit fuzzyeq $$ danot use fuzzy zero
allow degree $Bise fuzzy zero (default)
This applies to all types of comparisons (=, ~=, >, >=, <, and <=), and in terminatiteyadive -loop-.When

making logical comparisons with the "fuzzy zero" active, X = Y if abs((X-Y)/X)‘Q;Oor if abs(X-Y)<109.

Example:
unit xfuzzy
float: X,y
calc x :=3E-10
y :=5E-10
at 10,10
show y > X $$ FALSE (x-y difference tiny)
inhibit fuzzyeq
at 10,30
show y > X $$ TRUE (fuzzy zero not used)
*
SeeAlso:

Differences from Other Languages (p. 17)

Color

Color Introduction

Using color in cT todraw a recbox or a blue line isvery simple. However, understandingndusing the full
range of color possibilities requires a specialized vocabaladgareful attention to issues that doatise on a
noncolor computer. This section introduces some vocabataigoncepts thawill be usefulwhenreading the
command descriptions, including the following issues:

Foreground, background, and window color

Defining colors: RGB and HSV

Palette color (256 colors) and true color (thousands or millions of colors)
Experimenting with color -- a program that lets you play with colors

71

GRAPHICS & TEXT

Basic Color Usage
To display something in one of the basic colpravided by cT(referred to agblack, zwhite,zred, zyellow,
zgreen, zcyan, zblue, or zmagenta), set the color with a -color- command, then make the display:

color zred $%et to red

fill 10,20; 100,50 $%his is displayed in red
vector 110,10;120,60 $&his is also displayed in red
color zblue $&hange to blue

box 5,5;130,70 $&his is displayed in blue

Foreground, Background, and Window Color
To use colors effectively in cT it is important to understand the distinctions affavaground,
and "window" colors.

background,"

Consider the display dkext in moderewrite-. The color of the letters tsalled the foregroundcolor, and the
color of the area immediately surrounding the letters is called the background color:

color zredzcyan $¥oreground red, background cyan (blue-green)
mode rewrite
write Hello $$ letters red, background cyan

Similarly, in -mode rewrite- a patterned -fill- displays the pattern in the foreground color and the reraaag
(such as the inside of an "O") in thackgroundcolor. In modeinverse-the color rolesare reversed. Inmode
write- the background color plays no role, since the background areas affected. In -mode erasthe letters
or patternsare displayedising thebackgroundcolor. In mode xor- special considerationapply: see the
description of the -color- command.

The window color is the color that fills the screen whenever there is a full-screen erase due to a bdsadetag -
command, starting a new maimit (with -next-, back-, or -jump-), or reshaping the window. TW&dow
color can bethought of asdescribingthe "canvas" onwhich all further displaysare made.Usually you will
make the window color and the background color be the same.

A non-full-screen -erase- such as -erase 10,20; 100,150- displayackgroundcolor. Such erase-statements
cannot go outside the area defined by a -fine- command (which sp#uifiéimits of coordinates to be used by
the program). The blank-tag, full-screen -erase- command dhesesntire windoweven outsidehe fine- area,
and it uses the window color, not the background color.

To take a concrete example, suppose the foreground color is red, the background color is bineptiheolor
is yellow, and there is a -fine- command in effect. A -draw- statement displegd(the foregroundcolor) on a
yellow canvas (thevindow color). In ‘mode rewritetext is displayedred onblue (thebackgroundcolor). The
statement erase 0,0; zxmax,zymax- paints the entiréine- areablue (leaving the surroundingrea of the
window yellow), and a blank-tag -erase- makes the entire window yellow.

Defining Colors: RGB and HSV

cT providestwo schemes fodefining new colors offour own. The RGB color definitioscheme specifies a
color by giving thepercentages of redreen,andblue that make up that color. The HS¢heme specifies a
color by giving the hue, saturation, and value (brightness) that make up that color.

At theend ofthis section is grogramthat lets you experiment with RGBid HSV descriptions of colors.
Playing with the program will make the following discussion much more meaningful.

Our experience ofolor often starts with paintinged paint plusgreenpaint makes brown paint. Paints and
most things around us absorb light and have "subtractive colors." Computer mandotker light emitters

72

COLOR

have "additive colors." With additive colors, red plus green mg&bew, which may seemathernonintuitive
at first.

In the RGB scheme, white is the color with a maximum (100%¢afblue, andgreen(100, 100, 100)Black
has minimum amounts (0, 0, 0). The brightest reepsesented by100, 0, 0) -- that is, it has 100%éd, no
green, and no blue.

In the HSV system, the hue is a numbering of cotwderedfrom red to yellow to green to cyan tdlue to
magenta back toed againaround a 360-degréeolor wheel." Note that yellow liebetweenred and green
because it is equal parts of red and green. Similarly, cyan lies between green aaddshegenta liebetween
blue and red. Here are the hue values for the basic colors:

red 0
yellow 60
green 120
cyan 180
blue 240
magenta 300
red 360 (or 0)

Saturationrefers tohow "brilliant" the color is. A partiallyunsaturateatolor is one that habeen diluted by

adding some white. For example, pink can be made with RGB values of 100, 70, 70cavhiméthought of

as a pure red of 30, 0, 0 plus a lot of white made with RGB values of 70, 70, 70. We say that this pink is only
30% saturated. An RGB value of 25, 100, 100 represents a partially unsaturated cyan which can be thought of as
the sum of a pure cyan (0, 75, 75) with some white (25, 25, 25). We say that the saturdién is

The "value" or brightness is an overall intensity measure. A half-intensity yellow with RGB &8lué§€, 0
has a value of 50 in the HSV scheme.

Here are some colors expressed in the two different systems:

RGB HSV
Red 100, 00, 00 360,00,100
Pink 100,70, 70 360, 30, 100
Rose 100, 40, 70 330, 35, 100
White 100,100,100 xxx, 00, 100
Black 00, 00, 00 XXX, Xxx, 00

In HSV, if saturation is 0 and value is 100, the color is white no matter what hue is chosen. If the value is 0
(no brightness), the color is black. Intermediate values give a range of grays.

Gray Scale Values

Some computer systems lack color but pilovide a range ofrays. With such systems cT automatically
calculates a graintensity in amanner comparable tthe way ablack-and-whitetelevision displays aolor
television program. If an RGB value is "red,green,blue" then the calculated intensity is

intensity = 0.30red + 0.59green + 0.11blue

Note that the intensity for white is 0.30*100 + 0.59*100 + 0.11*100 = 30 + 59 + 11 = 100. The intensity for
black is 0.

Color Mechanisms: Palette Color and True Color

There are two quite different kinds of color mechanisms used in computers, "palettedncitoue” color. The
older "palette" color mechanism permits displays that use a limited numbdfeagndicolors, most often 256

73

GRAPHICS & TEXT

different colors. This is rather like a "paint by numbers" scheme. cdaulefine what each ofthese 256colors
looks like, but you can'isplay more than 256ifferentcolors on thescreen athe same time. If theisplay
you want to make requires more than 256 colors, e to compromise bysing some colors that look as
much as possible like the desired colors.

"True" color, on the othehand, hardlyrestricts what youcan display, because itpermits displaying many
thousands or evemillions of differentcolors at the same time. Thisn be particularlimportant for high-
quality color images or digital movies. With the growing importance of multimedia presentations, true color is
becoming increasingly popular.

Palette Color

On a computer with "palette" color you typically can use @Bf@rent colors at the same tim&/henyou say
-color zred- you are really choosing the "palette slot number" that corresponds to a color that ipasdbfiesd
to be red. cT predefines a palette with slot numbers 0 througlack (0), zwhite (1), zred (2), zgreen (3),
zblue (4), zyellow (5), zcyan (6), andzmagenta(7). So -colorzred- isactually the same as -color 2-.

The -palette-command lets you modify this predefined palette or create a completpiglet®; using the RGB
scheme to specify the desiredlors. If you want tadefinethe colors using the HSV scheme, use thetrgb-
command to translate from HSV to RGB. You don't need a -palette- command if the stagdsmah" palette is
adequate. The "system" palette includes the 8 basic cT colors but may provide as many as 256 colors total.

Includedamong the set of cT sample programgaette.t a -use-file that gives names to a set o$eful
additional colors beyond the basic eight cT colors, including light, regular, and dark versions of slatetateal,
gray, gold,lavender cerise,darkred, and darkgreen. Also useful on palette machines is the sammgram
setcolor.f a -use- file that lets you experiment with the color of an object, in the full context of your running
program.

A complication is that the color palette is shared among all the applications tha@wewunning at any given
moment. If the active application (the one whose window is most forward) sets up a paletteshette af red
in every palette slot, the sky in a color image in some other window will be red! For that reasffiersiols
for finding out what colorshavealreadybeendefined atsome instanandwhich might beacceptabldor your
purposes.

A special form of the -palette- command lets you extract a palette from an existing color image, so that you can
then display that image using a set of colors that is appropriate for that particular image.

True Color

It is more and more common for computers farovide "true color," in whichthere is nopalette. This is
sometimes referred to as offering "thousands of colorsthdlions of colors." Colorsare specifieddirectly in
terms of their RGB or HSV valuesnrestricted bythe limitation to only 256 colors. cT supports true color,
and there are versions of the colocommandsthat let you set a true color in terms of RGB or HSV
specifications. For convenience, palette commands work even on a true-color machingreviies areasy
way to refer repeatedly to colors you have designed, by referring to a slot number.

Experimenting with RGB and HSV color

Copy the followingratherlong programinto the beginning of youprogram windowand choose "Runfrom
beginning" from the Option menu. Observe #ffects of increasing adecreasinghe amount ofed, green, or
blue in the color, or the settings for hue, saturation, and value.

define group,color:
i: Slot 3 palette slot of varying color
i: TrueColor $$ TRUE if true color, FALSE if palette machine
slider: S(6) $$ six sliders for adjusting RGB and HSV color

74

unit

font

calc

if

endif
if

COLOR

ColorDemonstration

merge,color:

i: palsize

zsans,15

Slot := zncolors-1

TrueColor := FALSE

Slot >= 2

palette Slot,100,0,0,0,0,TRUE $$ modifiable color slot

Slot < 2 3 nothing but black and white available
text 0,89;zxmax,150

This section requires
a color display.

\

elseif

box 121,60;390,164;3
pause keys=all,touch
jumpout

~zreturn $%an't create a modifiable color slot
* Could be because this is a true-color machine; check:

sysinfo palette size, palsize

if palsize = 0 $$ indicates true-color machine
calc TrueColor := TRUE

else
text 0,89;zxmax,150

This monitor has color, but
cT cannot modify the palette.

\

endif
wecolor
color
erase
do

*

unit
do

at
write

unit

pause keys=all,touch
jumpout

endif

zblack $3nake entire window black

zwhite,zblack $$ write white on black
$$nake entire window black
RGBHSV $%color is OK

RGBHSV $$ experiment with RGB and HSV color descriptions
CreateSliders

295,20

Use the mouse to adjust the red,

green, and blue content of the colored

area. Or adjust the hue, saturation,

and value (brightness).

Note that reducing the saturation
"dilutes" the color by mixing in some
white (which is an equal mixture of
red, green, and blue).

CreateSliders $$% create 3 RGB and 3 HSV sliders
merge,color:

integer: nn

float: hue, saturation, value

marker: color

75

GRAPHICS & TEXT

76

do
text

text

gethsv

loop

\
endloop
do

text

\
text

endif
color

unit

InitSlider(1,60,35,100,"R")
0,43;55,300

0,124;55,300

InitSlider(2,80,35,0,"G")

InitSlider(3,100,35,0,"B")

100, 0, 0; hue, saturation, value $$ convert red to hsv
InitSlider(4,60,175,hue,"H")

nn:=1,7

calc \nn-2 \color:="red" \color:="magenta" \color:="blue"
\color:="cyan" \color:="green" \color:="yellow"
\color:="red"

text 0,184+13(nn-1); 55,300

InitSlider(5,167,175,saturation,"S")
0,184; 162,300

0,223; 162,300

0,265; 162,300

InitSlider(6,275,175,value,"V")
0,184; 270,300

0,265; 270,300

TrueColor

color rgb, zvalue(S(1)),zvalue(S(2)),zvalue(S(3))
* Exploit modifiable slot on palette machine:

rgb Slot, zvalue(S(1)),zvalue(S(2)),zvalue(S(3))

color Slot

ShowNewColor $$ display initial color (red)

zwhite
UpdatePalette(id) $8pdate all color sliders
merge,color:
irid
f: red,green,blue,hue,saturation,value
id<=3 $$ user changed RGB, must adjust HSV sliders
if TrueColor
color rgb, zvalue(S(1)),zvalue(S(2)),zvalue(S(3))
do ShowNewColor

100%

0%

<|s,color|>

saturated

pastel

gray

bright

dark

COLOR

else
3 -rgb- command instantly changes color on screen:
rgb Slot, zvalue(S(1)),zvalue(S(2)),zvalue(S(3))
endif
gethsv zvalue(S(1)),zvalue(S(2)),zvalue(S(3)); hue, saturation, value
slider reset, S(4); value, hue/3.6
slider reset, S(5); value, saturation
slider reset, S(6); value, value
else $user changed HSV, must adjust RGB sliders
if TrueColor
color hsv, 3.6zvalue(S(4)), zvalue(S(5)), zvalue(S(6))
do ShowNewColor
else
hsv Slot, 3.6zvalue(S(4)), zvalue(S(5)), zvalue(S(6))
endif
getrgb 3.6 zvalue(S(4)), zvalue(S(5)), zvalue(S(6)); red, green, blue
slider reset, S(1); value, red
slider reset, S(2); value, green
slider reset, S(3); value, blue
endif
unit InitSlider(id, xx, yy, value, label) 3 create a color slider
merge,color:
i id, xx, yy
f: value
m: label
rorigin XX, Yy
rtext 0,-16;10,0
<|s,label|>
\
rslider S(id);0,0; 10,110; UpdatePalette(id); value, value
unit ShowNewColor
fill 122,20;285,145

color: Color Graphics & Text

The -color-command specifiethe color used bysubsequentext and graphics commandsOnce a -color-
command is issued, the same color is used until a new -color- command is issued. Up to 256 different colors can
be displayed on a palette-based computer, or thousandilions of different colors on a true-color computer.

The first part of the tag gives the color in which displases drawnthe "foregroundcolor." Thesecond part

gives the "background" color, which is discussed below.

Simple form:
color foreground color slot $$ choose from palette; background unchanged
color foreground color slot, background color slot $$ choose from palette
color , background colaiot $$ choose from palette, foreground unchanged
color zred $$ or zblack, zwhite, zyellow, zgreen, zcyan, zblue, or zmagenta

On a true-colorsystem (whichdoesnot have a paletteyou can specifythe color directly,and the same
commands on a palette-based system search for a closest match across the entire current palette:

77

GRAPHICS & TEXT

color rgb, rr, gg, bb $$ specify true-color rgb values, or search for best match
color hsv, hh, ss, v 3 specify true-color hsv values, or search for best match
color rgb, rr, gg, bb; hsv, hh, ss, vw 3 foreground and background

color yhsv, hh, ss, v $$ backgrouwndly

"Palette slot numbersdre inthe range 0 to255, even on true-color machineEach paletteslot describes a

color. For convenience, a palette of 8 slots (humbers 0 through 7) is predefined and each slot is given a name. In
order,they are: zblack, zwhite, zred, zgreen zblue, zyellow, zcyan (blue-green),zmagenta Using

additional colors, or changing the predefined colors, requires a -palette- command.

unit xSimpleColor $Bnakes a red & blue display
color zred 3set color to red

box 25,25; 75,75

fill 50,50;100,100

color zblue 3 bange the color to blue
draw 10,10; 125,125

*

For most displays, only the foreground color is usednade rewrite-and -modenverse-, displaying text or

filling an area with a pattern not onbreates a "foregroundfisplay but alsochangeghe "background." The

-erase- command and -mode erase- replace the erased display with the background color. (But note that the blank-
tag, full-screenversion of the erase-commandfills the entirewindow with the color set by thewcolor-

command, and this color can be different from the background color.)

The systemvariableszcolorf andzcolorb arethe current foregroundand backgroundcolors. The system
variableszdefaultf andzdefaultb give the system default foreground and background colors.

If you want a normal display to show up against a normal background, it is better to use -color zdefaultf- than to
use -color zblack- or -color zwhite-. While all currently supported computersrwaagally whitewindows and
zdefaultf represents black, it is possible that sdim@re computersnight havenormally blackwindows and
zdefaultf would representvhite. If you were touse -colorzblack-with a default backgroundyothing would

appear on such computers!

Coloredareas ar@paque, evemith light colors such as yellovand cyan. To make text or drawing on a
colored field, fill the area first, then make the drawing. Note that -fill- with a -pattern- only modifies some of the
pixels, so a patterned fill mappeartranslucent (unless one usesode rewrite- or -modaverse-).Similarly,

an icon drawn with -plot- only modifies some pixels and may appear translucent.

The actual color of an objectdisplayed in -mode xor- is undefined. Usually with -modexor- the
color of an object isunpredictableand completely imependent ofour foregroundandbackgrounccolors, even
whendrawing on aregion filled with the backgroundcolor. Butthere isreversibility: Doing two mode xor-
displays in the same color at the saptece always restordle screen toits original appearance, abng as
there isn't an intervening -palette- command.

Examples:

unit xRainbowl $$ make a simple rainbow
i index

clip 0,0; 350,150 $$ show only part of -disk-s

at 160,180

loop index := 1,6
color \index\\\zblue\zcyan\zgreen\zyellow\zred\zwhite
disk 150-10index

78

COLOR

endloop
clip $$ don't forget to cancel clip!
unit xBackground $3llustrate background color
color zblue 3 blue foreground, default background
fill 50,50; 150,150
erase 75,75; 125,125
color ,zyellow $$foreground unchanged, yellow background
fill 200,50; 300,150
erase 225,75; 275,125
unit xBackground?2 $dHlustrate -mode rewrite-
color zred, zcyan $$ blue foreground, yellow background
at 50,50
write This text is in red.
It does not affect the background.
mode rewrite
at 50,90
write Text in -mode rewrite-
changes the background.
unit xOpaque $dlustrate opaqueness of colors
at 120,40
write Hello there
at 120,150
write Hello again!
pause
color zcyan
fill 160,30; 250,70 $3 blocks out the text
pattern zpatterns,2 $fis is a "sparse" pattern
fill 160,140; 250,180 $%ext peeks through pattern
SeeAlso:
Color Introduction (p. 71)
Color Status (p. 326)
zrgbn & zhsvn Finding a "Closest" Color (p. 88)

wcolor: The Window Color

The wcolor- command specifiethe basic color of the entiravindow but does not update the display
immediately. The next time th@indow is cleared, it is restored tthe colorspecified by wcolor-. The tag of
-wcolor- is a palette slot number (refer to the -color- description) or a true-color description.

wecolor zblue $Hull-screen erase will turn entire window blue

On a true-colorsystem (whichdoesnot have a paletteyou can specifythe color directly,and thesesame
commands on a palette-based system search for a closest match across the entire current palette:

wcolor hsv, 50, 50, 90 3 RGB for true-color systems; or best match
wcolor rgb, 80, 30, 40 $$ HSV for true-color systems; or best match

The display is updated by moving to a new main unit with -next-, -backjump-; by executing dull-screen
-erase-; or by reshaping the window. To update the window color immediately, use a blank-tag -erase-.

79

GRAPHICS & TEXT

It is important tounderstandhe relationship of -wcolor-erase-and fine-. The fine- command defines the
region of the window that is the active display. The only command tradloised to affecthe areaoutside the
active display is the blank-tagrase<command. It sets the entivindow to the colorspecified by -wcolor-.
Other -erase- commands use the current background color and stay within the active display area.

To set your program to display green on alack background, includinese commands ithe IEU (initial
entry unit -- the statements preceding the first -unit- command):

wcolor zgreen
color zblack, zgreen
erase

If there are no explicit commands to set the foreground, background, and window colors, the program behaves as
if these commands were included in the IEU:

wcolor zdefaultb
color zdefaultf, zdefaultb
erase

The palette slot number of the current window color is availaktevaolor.
Example:

These examples illustrate the use afiiadow color that isdifferentfrom the backgroundcolor. (Usually you
would put the -fine- and color-setting commands in the IEU.)

unit Xwcolorl

fine 200,150 $$ limit display area to a small region
color zblue,zyellow 3 foreground and background
wcolor zred $3declare full-window color

erase $ctivate full-window color

erase 0,0; zxmax,zymax $$ erase active display area
at 50,50

write HELLO

*

unit Xwcolor2

fine 200,150 $$ limit display area to a small region
color zblue,zyellow 3 foreground and background
wcolor zred $3declare full-window color

erase $ctivate full-window color

box 3 frame around active display area
mode rewrite

text 14,33177,124

See how "rewrite" mode
makes the background

turn yellow?
\
SeeAlso:
Color Introduction (p. 71)
color Color Graphics & Text (p. 77)

Color Statugp. 326)

80

COLOR

palette: Creating a Color Palette

The -palettecommand is used teeinstall thestandard'system™ paletteprovided onthe particularcomputer
system, or tcextract a palette from a color imagentained in a screerariable, or to modify oradd to the
current palette of colors:

palette $dblank tag: reinstall system palette (like obsolete -newpal-)
palette "ImageFile" $$xtract palette from image file
palette 880, 74, 20 $% slot 8 has RGB values 80, 74, 20

9, 30, 80, 25, 8,4 $%$ slot 9 will fallback to slot 8 or 4
11, 25, 75, 25, 0, 0, TRUE $$ modifiable palestiat

palette slotarray, Rarray, Garray, Barray $$ array form

Reinstalling the system palette

The blank-tag -palettesommand resetthe palette to contain the colors normatisovided bythe particular

computer system. Whenever cT starts executing a program, the system palette is installed. ThEaleysem

offers a range of colors that is adequate for many purposes. The system palette includes the eight basic cT colors
(black, white, red, yellow, green, cyan, blue, and magenta).

The obsoletenewpal commandhadthe effect of reinstalling the system paletbeforemodifying thepalette
with new definitions. It is recommended that any -newpal- commands be replaced.

Extracting a palette from a color image

Although the system palette is adequate for many purposes, a particular color imagggjuitayaset of colors
differentfrom those in the system palette arder todisplaywell. The secondform of the -palettecommand
extracts color definitions from an image file (a PICT file on a Macintosh or a *.BMP file on Windows).

If the new palette is successfully installedeturn is TRUE after executing the palette- command, and
zretinf gives the number of palette slots tharefound. If not, zreturn gives a fileerror indication. For
example, a value of 4 means "no such file,” and a value of 5 means "improper file type."

Priorities in installing thepalette:In building the palette, cTefuses to modifithe colors blackand white,

which must always be available. cT tries to avoid modifying any colors used by the computer sydigptayo
standard controls such as sliders and window title bars, but if necessathamitjethese colors, whicleanlead

to peculiar-looking sliders dtitle bars. How many sucprivileged colors therare can be obtainedvith the
-sysinfo- command (-sysinfo default colors,var-). The last existing colors to be modified are any colors that you
haveexplicitly set with theslot-oriented -palette- commandsat are describedelow ("Designing your own
palette of colors").

Designing your own palette ofcolors

The third form of the palette- commandets you specify aslot number, with the nexthree arguments
specifying thered, green,andblue parameters fothat slot numberOncethe palette habeen established, the
statement -color 9- would select the color defined for palette slot 9 to be used in displaying text and graphics.

Following the RGB parameters, one can specify optional fallbacKeregroundand backgroundcolors. In the
-palette- example above, tifiere aren't enougtlifferent colors available t@rovide for aslot number 9.this
color will "fall back” toslot 8 whenused as a foregrourmblor andwill fall back to slot 4whenused as a
background or window color. If the new palette is successfully instaltetiirn is TRUE after executing the
-palette- command. Ihot, zreturn is a positive number indicating how masipts were created, and the
specified fallbacks will be in effect for the other slots.

81

GRAPHICS & TEXT

If your program absolutely needs to have 25 colors, you can check the valneadbrs (discussed separately)
at the start of the program and refuse to proceed if #ireréewerthan 25 availablslots. However,you might
choose to specify aecond-choiceolor for slots thatare unavailable. The optiondallback argumentspecify
what palette slots should be used if the requested slots are not available.

palette 12,80,73,20,zdefaultf,zblue $$ fall back to zdefaultf, zblue
25,320,80,25,12,8 $Bll back to slots 12, 8

In the example above, if palette slot 25 is unavailable, the color from slot 12 widlefor foreground and
slot 8 for background (and window color). If palette slot 12 is unavailab&faultf will be used.

Following thefallback parameters, there is aptional "modify" parametethat is FALSE bydefault. If this
parameter issuccessfully set to TRUE, orman use fgb- or -hsv- commands to malestant changes in
displaysalready on the screeftdsing the example above, the color of aaeyt or graphics thahad beendrawn
on the screen with -color 11- can be instantly changed simply by executingbamr -hsv-command to alter
the color definition for slot number 11.

Unless you reallyneed toperform this special kind of instantaneous color change,ndb set themodify
parameter to TRUE. For one thing, these special cal@aot available atall on true-colorcomputerswhich
increasingly are becoming standafdso, on computers that permit multiple programs to run simultaneously,
specifying many palette slots to be modifiable locks up these slots in sua that other programs may be
preventedfrom operating normallyAfter a -palette- command;return may not be TRUE if Here aren't
enough modifiableslots availablegven ifthe total number of slots is within bounds. Than happen either
becausdhe computer systemdoesnot permit such color manipulations (thiscludes true-colosystems) or
becauseother simultaneously running prograrhave reservedmany modifiable palettslots for their own
purposes.

This doesn't mean that you can't modify your palette. The followorgmandwill modify two slots of the
current palette and install the new, modified palette:

palette 5,20, 30, 40
6, 40, 60, 80

Installing a modified palette can be a rather slow process ongalatte-basednachines, sadeally oneshould
use the command sparingly. Also note that the followivg-palette- commands take longer than the previous
example:

palette 5,20, 30, 40

palette 640, 60, 80
Thesetwo -palette- commands involve modifying and installing thedified palettetwice. The previous form,
in which succeeding command names are omitted, makes up the mduiifeed paletteandthen installs it, so
there is onlyoneinstallation of a modified palette, not two.
The arrayform of the palette- command acceptole arrays aghe arguments foslot numbersyred, green,
blue, foregroundfallback, backgroundfallback, and modify parameter. An example iven below, in the
program examples. In the array of slot numbers, a slot nugnbaterthan 255 is taken to mean "ignatés

entry in the arrays."

At the start of a program, cT installs the system pabuite orderghe colors in such a way that the first eight
colors are the basic cT colors, with appropriate fall-back options:

82

COLOR

palette zblack, 0, 0, 0, zblack, zblack
zwhite, 100, 100, 100, zwhite, zwhite
zred, 100, 0, 0, zdefaultf, zdefaultb
zgreen, 0, 100, 0, zdefaultf, zdefaultb
zblue, 0, 0, 100, zgreen, zdefaultb
zyellow, 100, 100, 0, zred, zdefaultb
zcyan, 0, 100, 100, zblue, zdefaultb
zmagenta, 100, 0, 100, zred, zdefaultb

If only four colors are available (black, white, red, gneen)blue will be shown as green, yellow @, cyan
as blue (which falls back to green), and magenta as red.

Includedamong the set of cT sample programpadette.t a -usedile that definesnames for a set afiseful
additional colors beyond the basic eight cT colors, including light, regular, and dark versions of slatetateal,
gray, gold,lavender cerise,darkred, and darkgreen. Also useful on palette machines is the sammgram
setcolor.f a -use- file that lets you experiment with the color of an object, in the full context of your running
program.

Some computers let you have sevatlifferent programs visible simultaneously. Usually these compiutave
the color palette of just one of these programefiect at atime. As a resultchangingthe palette may
instantaneouslyhangethe colorseverywhereMWhenyou quit running a cT program, ciestores thesystem
palette.

Some computers offer "true color," in whitthere is nopalette. Colorsare specifieddirectly in terms of their
RGB or HSV values. cT supports true coldrereareversions of the colocommandghat let you set &ue
color in terms of RGB or HSV specifications. Fawnvenience, palette commands work even druexcolor
machine, which provides an easy way to refer repeatedly to colors you have designed.

Examples:
unit Xpalette
palette zyellow,100, 50, 50 $$ change yellow to pink
if ~zreturn
at 10,10
write Cannot make pink.
else
color zred
fill 10,10; 160,160
color zyellow
fill 30,30; 140,140 $$ pink, not yellow
endif
pause

In the following example using the array form of the -palette- commandeea getrgh- commands to convert
from HSV (hue-saturation-value) to RGERd-green-blue) becautiee palette- commandnly recognizes RGB
descriptions of colors:

unit xRainbow2 $$ a more realistic rainbow
* Note: this example uses palette slots 9 through 39.

i: radius, hue, paletteN

i SKY=9, MAXC=39, NC=MAXC-SKY+1

i: slot(NC), r(NC), g(NC), b(NC)

i: S=70 $$ for dimmer rainbow, S=30
getrgb 200,20,100; r(1),9(1),b(1) $%$ rainy-day sky

83

GRAPHICS & TEXT

calc slot(1) := SKY
paletteN := 2
loop hue := 0,290, 10 3 go from red through indigo
getrgb hue,S,100; r(paletteN),g(paletteN),b(paletteN)
calc slot(paletteN) := paletteN+SKY-1
paletteN := paletteN + 1
endloop
palette slot,r,g,b $%add to basic cT palette
color SKY
fill 10,40; 310,200 $%&ky background
clip 0,0; 500,150
calc radius := 100
loop paletteN := SKY+1, MAXC
color paletteN
atnm 160,210
circle radius
calc radius := radius +1
endloop
pause
SeeAlso:
Color Introduction (p. 71)

Color Statugp. 326)
sysinfo Get System Information (p. 319)
zreturn The Status Variable (p. 332)

rgb & hsv: Modifying a Palette Slot

The -rgb-and-hsv- commandsire used to changeodifiable "paletteslots” for use by the color- command.
These commands are used only for very special effects, where something already on the screen masiochange
rapidly (for example, a largareamust changecolor instantaneously as slider is adjusted)For ordinary color
definitions, use -palette- commands. Also note that rifie- and-hsv- commands cannptoducethesespecial
effects on true-colocomputers. Since true color is increasingly becomingsthadardthe +gb- and hsv-
commands have limited usefulness.

Each palette slot holds the "rule” for making one color. The -rgh- command specifies thaessotmatedvith a
palette slot by giving theercentages of redjreen,and blue that make up that color. The -h@smmand
specifies the color associated with a palette slot in terms of the hue, satwaativalue. To use thesgpecial
commands, you must first specify that the palette slot is modifiable:

palette 11, 25, 75, 25, 0, 0, TRUE $$ make palette slotifiable

rgb 11, %red, %green, %blue, f fallback, b fallback

hsv 11, hue, saturation, value, f fallback, b fallback

rgb N 3 restore slot N to original palette setting
hsv N

rgb 3 restore all slots to original palette settings
hsv

84

COLOR

The first argument of the tag is a palettet number, an integdvetween Gand255. Slots 0 through 7 are
predefined Zblack, zwhite, zred, zgreen zblue, zyellow, zcyan, andzmagentg to not bemodifiable,
although you change these basic palette entries with a -palette- command.

The next three arguments give thercentages of redreen,andblue (RGB), or the hue, saturaticemdvalue
(HSV). Thepercentagessaturation,andvaluerangefrom 0 to 100. The huédicatesthe color on a'color
wheel" and ranges from 0 to 360.

You can give optional éregroundand background fallbackoptions, which modify the original palette
specifications.

When only the slot number is given in the tag, that slaks$tored tathe color valugandfallback options, if
any) set by the original -palette- command. When the tag is blank, all of theesletstothe originalpalette
settings, which may be a slow process.

It is not possible to use -rgb- and -hsv- commands to change the color definitions for a palette slot that was not
successfully specified to be modifiable. If the color cannot be changed by the -rgb- or -hsv- cometandl,
will be set toFALSE.

The -rgb- and -hsv- commands reflect different ways of thinking about how cgladsced.The red-green-blue
(RGB) system specifies how much of each color is used. The greapmrtemtagethe more intense the color.

In the hue-saturation-valugystem (HSV), the hue specifies the color, saturation gives the "brilliance," and
value gives the brightness.

It is important to understand a major difference betvtbenrgb- or -hsv- commandandthe color- command:
Executing a -color- command chooses a palette slot to be used by the following display commaiues, bat
affect what is already on the screen. Executing an -rgbh- or ebsvmand on a palette-baseoimputer instantly
changes the color of anything already on the screen that hadlispityedusing that palettslot, butdoes not
change which palette slot is used by the following display commands. (These commandafidotiloé screen
display on a true-color computer.)

If a region contains dynamically modifiable colors (th@satrolled by -rgb- or hsv- commands), orsome
computers a -get- followed by a -put- will not restore the original colors.

NOTE: While testing sample units that usgb- or -hsv- commandyou must usually useither "Runfrom
selected unit" or put a -pause- at the end ofuthié. "Executeselectedunit” or "Execute currentinit" switches
back to the computer's default palette as soon as execution is finished.

Examples:
unit xrgb
i: PS =10
palette PS, 0, 0, 100, 0, 0, TRUE 3 no red, no green, 100% blue
color PS $&hoose color
fill 100,50; 200,150
vector 200,150; 50,200
pause $$vait for keypress
rgb PS, 80, 0, 80 $$ 80% red, no green, 80% blue
pause
See Aso:
Color Introduction (p. 71)

palette Creating a Color Palette (p. 81)
Color Statugp. 326)

85

GRAPHICS & TEXT

zncolors: The Number of Available Colors

The systenmvariablezncolors gives the number of palette slgpsovided bythe system. (On aue-color
systemzncolorsgives a very largaumber.)

Color systems with palettes typically offer 16 or 256 palette slots. The number of colors availepdetéesl in
zncolors On a monochrome system (e.g., black and white, or green and black) where there is no possibility of
color changeszncolorsis zero.

In somecases therenay be many palette slots available, but witithangeableolors. The systenvariable
zreturn reports FALSE (0) if an -rgb- or -hsv- command attempts to specify a color fenciiangeablslot.

If the slot is successfullghangedzreturn is TRUE (-1). The -sysinfocommand provides additional details
about the availability of colors.

Example:
unit Xzncolors
i index
at 15,25
write This system has <|s,zncolors|>

palette slots available.
palette 4,50,50,50,0,0,TRUE 3 make slots 4 and 5 modifiable
5,75,75,75,0,0,TRUE

at 15,75
write List in bold slots which
cannot be changed:
loop index :=0, 7
rgb index,0,100,100 $$ make some change
if ~zreturn
write <|s,index|>
else
write <|s,index|>
endif
rgb index $&hange back to default colors
endloop
write done
*
SeeAlso:
Color Introduction (p- 72)

palette Creating a Color Palette (p. 81)
Color Status (p. 326)
sysinfo Get System Information (p. 319)

getrgb & gethsv: Find RGB and HSV Values

The -getrgb- and -gethsv- commands are used to convert between RGB and HSV specifications for a color:

getrgb 210, 43, 95; myred, mygreen, myblue $$ HSV to RGB
gethsv 100, 100, 0; myhue, mysat, myvalue $$ RGB to HSV

86

COLOR

The syntax of theseommands isimilar to thatusedfor passing arguments to a subroutine. The finste
arguments are the HSV or RGB values to convert, and the nextuieedefinedsariablesreceivethe converted
values.

Another form of the -getrgb- and -gethsv- commands can be used to request information about an existing palette
slot and receive back information about the foreground fallsatkandthe color values. Theommands return

the current RGB or HSV values of a palette slot. If the palette slot number is greater than or 2gqoal dos,

the foreground fallback slot number is returned.

getrgb N;ActiveSlot, myred, mygreen, myblue
gethsv N; ActiveSlot, myhue, mysatyvalue

The slot number N is specified "by value," and the active slot number and RGB opat&Yeters areturned
as though they had been passed "by address.” The slot number, N, may be a user-defined variable, an integer, or
a system-defined color such as zgreen. The other arguments are user-defined variables.

Usually ActiveSlot isequal to N.However, if N is greatethan orequal tozncolors, ActiveSlot is the
foreground fallback slot corresponding to slot N.

The -getrgh-command returnthe RGB values of ActiveSlot in theariables myred, mygreemnd myblue.
Similarly, the -gethsv- command returns in yal@finedvariablesmyhue, mysatand myvalue the actual HSV

values used when plotting. If there has been a fallback from slot N, so that ActiveSlot is not the same as N,
the original color values assigned to slot N cannot be retrieved.

Examples:
unit Xgetrgbl
i: hue, sat, value
gethsv 90, 60, 40; hue, sat, value
at 10,20
write RGB 90, 40, 40 is equivalent to

HSV <|s,hue|>, <|s,sat|>, <|s,value|>

*

Some computer systems provide a way to specify the number of colors (for example, the Monitor section of the
Macintosh Control Panel). You might want to change the number of colors when trying this example.

unit Xgetrgbh2
i: Active, r, g, b
getrgb zmagenta; Active, r, g, b
at 50,50
write zmagentds in slot #<|s,Active|>.

Its RGB values are <|s,r|>, <|s,g]>, <|s,b|>.
palette 50, 70, 70, 45, 4
getrgb 50; Active, 1, g, b

at 50,100
write Slot 50 is plotted as slot #<|s,Active|>.
Its RGB values are <|s,r|>, <|s,g]>, <|s,b|>.
color zmagenta
fill 52,148;112,209
color 50
fill 160,148;220,209
pause

87

GRAPHICS & TEXT

SeeAlso:
Color Introduction (p. 71)
Color Status (p. 326)
zrgbn & zhsvn: Finding a "Closest” Color

The system functiongrgbn(red, green, blue) andzhsvn(hue, saturation, value) give the paletteslot
number in the current palette whose RGB (or HSV) values most closely approximate the specified vesaes.
functionsare useful when you don't want to disturb colors thae alreadybeen assigned tthe available
palette slotszrghn or zhsvntake an arbitrary colodescriptionandfind the slot that moshearly matches it.
(Note that the -color- command also has an rgh and an hsv version that searches through the current palette.)

The example below chooses random valuesddrgreen,andblue. It useszrgbn to find the palette slot that
most nearly matches those values and displays the color dflthaThen the example assigns those values to
slot 15 and displays the color that the randomly chosen values would actually produce.

Example:
unit Xzrgbn
i: R, G, B, slot, ourslot = 15
i: ActiveSlot, red, green, blue
next Xzrgbn
palette ourslot,100,100,100,0,0,TRUE $$ modifiable slot
loop
randu R,100 $¥choose random color values
randu G,100
randu B,100
calc slot := zrghn(R,G,B) $3 find closest slot
outloop slot ~= ourslot $$ mustn't use same slot
endloop
rgb ourslot, R, G,B $$ set palette slot to random colors
color ourslot $$ select slot
fill 25,20; 100,70 $Rlisplay the random color
getrgb slot; ActiveSilot, red, green, blue
color zdefaultf
at 125,20
write Random values chosen
rgb: <|s,R|>, <|s,G|>, <|s,B|>
color slot
fill 25,120; 100,170 $slisplay closest color
color zdefaultf
at 125,120
write zrgbn found slot #<|s,slot|>
Actual values for slot #<|s,slot|>:
rgb: <|s,red|>, <|s,green|>, <|s,blue|>
*
SeeAlso:
Color Introduction (p. 71)
Color Status (p. 326)

Images

88

IMAGES

get and put Portions of Screen
The -get- and -put- commands can be used

to save or restore an image of a rectangular portion of the screen, or
to convert an array of numeric data into a color image and display it.

"Screen" variables must be defined for use with -get- and -put-. The screen variable identifies the saved region:

define screen: scrl, myimage, datapic
byte: SomeData(100*50)

get scrl; x1,y1x2,y2 $$get this portion of the screen

put scrl; x3, y3 3 put the image at a new location
get scrl; {in-line color image} $%$ transfer in-line image into screen var

* 24-bit rgb pixel info, 100 by 50 image:

get datapic; rgb; 24, 100, 50, SomeData

* 8-bit pixels; use current palette:

get datapic; palette; 8, 100, 50, SomeData

get scrl $3elease memory used for stored image

After a portion of the screen has been saved with -get-, thecgrumand placethe savedimage at aspecified
location (affected by a -clip- region). There ateo fget-, -gget-, -rput-and-gput- commandshat userelative
or graphing coordinates. Note whasing -gput- or -rput- that yomust specify theupper-left corner of the
image, independent of which direction the x- and y-coordinates run.

You can use -get- to save a rectangle where you want to display a temporary message, then usestprg- to
that portion of the display. Yoganalso userepeatedput- commands tenove an image across tkereen to
make an animation.

The system functiongswidth(screen variable) andzsheight(screen variable)give the width and
height of the image currently associated with that screen variable.

These commands can also be used to save or restore images in files: see "Images & Files". You may need to use
a -palette- command to extract an appropriate set of colors from the image file, so that the current palette will be
set appropriately for use by -put- in displaying the image:

palette "ImagA" $Extract palette from color image
get scrl; "ImagA" $$ get color image from file (or in-line image)
put scrl; x1,yl $$ display image using current palette

Multimedia issues: Note that in amultimedia program that utilizes many color images, some planning is
required to ensure that images and other graphics display with appropriate colors. For example, if on a 256-color
palette-basedomputer you try to display simultaneously one image tequires250 bluesand green, and

another image that requires 250 reds and browns, you've got a problem! About the only thing you can do in that
case is to modify the images to use fewer colors, so that one maletpan both images as well as possible.

A related issue ighat digital movies may install their onwgustomized paletteand affectthe display ofother

images.

Numeric data from an array: Here aremore details on converting numeriatainto a color image for
visualization purposes, using the "palette” version of the -get- command:

89

GRAPHICS & TEXT

define byte: array(picturesize) 3 or can be integer array
get screen variable; palette; pixel size, width, height, array
put screen variable; 10, 20 $$ display the color image

The -get-command transferthe array of data to an off-screémage, treatingeachelement in thearray as an
index in the current color palette (hence the "palédsivord inthe command). At presentpixel size" must
be 8 for the palette option, signifying 8 bits per pixel.

An "rgh" form of this -get- command is also available:

define byte: array(picturesize, 3) 3 or can be integer array
get screen variable; rgb; pixel size, width, height, array
put screen variable; 10, 20 $$ display the color image

This -get- command transfers the array of data to an off-screen image, treating each three consecutive elements in
the array as a red-green-blue triplet. At present, "pixel size" must be 24 signifying pérptgel, 8 bits for
each of red-green-blue.

Mode does not apply:Note that "mode" commands do not apply to color pictures displayed with -put-. The
picture completely replaces the specified region of the screen, as though you were using mode rewrite.

Use with modifiable colors: If any of the savedregion of thescreencontains dynamicallymodifiable
colors (those controlled by -rgb- or -hsv- commands)same computers a -gdtllowed by a-put- will not
restore the original colors.

After a -get- commandzreturn is set as follows:

-1 TRUE, all ok
1 not enough memory to get the image (subsequent -put- does nothing)

Like file variables,screen variables can hmassed byaddress tosubroutines. Twascreen variables can be
compared with "=" or "~=",

Examples:
unit xget
screen: boxtext, ring, save
i: X,y
color zred
at 10,20
write Here is some text.
calc X :=zwherex
box 10,20; x,35
get boxtext; 10,20; 120,35 $$ save the text
put boxtext; 70, 60 $$ place additional copies of text
put boxtext; 130,100
color zblue
box 0,70; 60,130; -3
color zgreen
at 30,100
disk 25
mode erase
disk 15 $$make a hole in the disk to make a ring

90

IMAGES

mode write
get ring; 0,70; 60,130 $$ save the ring
erase 0,70; 60,130 $$ erase thiag
put ring; 210,20 $$ show ring
put ring; 160,170 $$ show another ring
unit xXgetarray
screen: sc
byte: data8(16*16), data24(16*16,3)
i index
* 16 by 16 palettized image, all red:
loop index :=1,16*16
calc data8(index) := zred
endloop
get sc; palette; 8, 16, 16, data8
put sc; 10, 10 $$ displays 16 by 16 red block at 10,10
* 16 by 16 rgb image, all blue (red=0, green=0, blue=maximum=255):
loop index :=1,16*16
set data24(index,1) := 0, 0, 255
endloop
get sc; rgb; 24, 16, 16, data24
put sc; 10, 30 $$ displays 16 by 16 blue block at 10,30
SeeAlso:
Images & Files (p. 91)
move MakingAnimations (p. 98)
Animations with get and put (p. 100)

Images & Files

The -get- and -put- commands can be used to save or restore color images in files:

define screen: scrl, myimage

get scrl; x1,y1x2,y2 $$get this portion of the screen

put scrl; "Displayl” 3 store image in file named "Displayl1"

put scrl; "image.ppm"” 3 store image in file in universal PPM format
get myimage; "CarPic" 3 get color image from file "CarPic"

put myimage; x4,y4 $$ put color image on the screen

get scrl $3elease memory used for stored image

There are also -rget-, -gget-, -rpund-gput- commandshat use relative or graphirapordinates. Notevhen
using -gput- or -rput- that you muspecify theupper-left corner ofthe image,independent ofvhich direction
the x- and y-coordinates run.

After a successful -put- to a file, the system variabdturn is -1 (TRUE); otherwise the valurdicates a file
error (see "File /0O Errors").

Whenusing -put- to store an image in a file, tgfaultthe image is in PPM format (Portatiéx Map) on
Unix, or PICT format on a Macintosh, or BMP format on Windows.s@we an image iPPM format on a

91

GRAPHICS & TEXT

Macintosh or Windows, use a file name ending in ".ppm", such as "image.ppm". In all oféisesthe image
is stored in a pixel or "paint" format. On a Macintosh it is possible to use a epiotnand tostore animage
in an object-oriented "draw" format (see "Printing").

When using -get- to retrieve an image from a file, the inw@gebe inPPM format on any platform, oPICT
format on a Macintosh, or BMP format on Windows.

The system functiongswidth(screen variable) andzsheight(screen variable)give the width and
height of the image currently associated with that screen variable.

You may need to use a -palette- command to extract an appropriate set of colors from the image file, so that the
current palette will be set appropriately for use by -put- in displaying the image:

palette "ImagA" $Extract palette from color image
get scrl; "ImagA" $$ get color image from file (or in-line image)
put scrl; x1,y1l $$ display image using current palette

Multimedia issues: Note that in amultimedia program that utilizes many color images, some planning is
required to ensure that images and other graphics display with appropriate colors. For example, if on a 256-color
palette-basedomputer you try to display simultaneously one image teqtires250 bluesand green, and

another image that requires 250 reds and browns, you've got a problem! About the only thing you can do in that
case is to modify the images to use fewer colors, so that one paleipan both images as well as possible.

A related issue ighat digital movies may install their owsustomized paletteand affectthe display ofother

images.

Insert File: You canalso use "Insert file" toplace acolor image into yousourceprogram. Or, for images
that are not too large, you can use "Paste" to insert a copied color image into your source program.

Mode does not apply:Note that "mode" commands do not apply to color pictures displayed with -put-. The
picture completely replaces the specified region of the screen, as though you were using mode rewrite.

Memory required: Note also that you need quite a bit of memory to work with large color picturasusT
use at least twice the number of bytes that are in the picture when doing an "Insert file", for example.

Examples:
unit xgetimage
screen: image
file: choose
marker: filename
loop
setfile choose; zempty; ro $$ choose an image file
outloop zreturn
if zreturn = 18
at 5,5
write Need bigger window.
pause
else
jumpout
endif
endloop
get image; zfilepath(choose)+zfilename(choose)
put image; 10,10
color zred

92

IMAGES

fill 12,12; 20,20 $$ add red square to image
get image; 10,10; 300,200 $$ save a new image
loop
addfile choose; zempty $$ choose a file
outloop zreturn
if zreturn = 18
at 5,5
write Need bigger window.
pause
else
jumpout
endif
endloop
calc filename := zfilepath(choose)+zfilename(choose)
delfile choose $$ delete the new file
put image; filename $$ store image in file
SeeAlso:
get and put Portions of Screen (p- 89)
move MakingAnimations (p. 98)
File /0O Errors (p. 287)
Printing (p. 14)

icons: Selecting an Icon

The -icons-command specifies aet of icons. Icons from this setre displayedusing -plot- and move-
commands. Unlike characters associated with the -font- command, there is no automatic rescaling of icons.

icons zicons 3 a system icon set
icons "mycars” $$ same directory as source
icons "/cmul/cdec/yourid/auto/mycars”

The tag of -icons- gives the name of the icons Gete anicon set hadeen specified, it remains activatil
replaced with a different set of icons. The cT sample progtamwicon.tdisplays all the iconandpatterns in
an icons set.

If the icon set is a system-provided set, or iesides inthe samedirectory asyour sourcefile (your ".t" file),
only the file name is required. If you create your own icons set in some other directory, the full patimusime
be specified.

The nameziconsis a system marker variable that is recognized by all machine types.

A "set of icons" is a file of dot patterns. Usually such a setdated and editegsing programs suppliedith
cT, including thdcon Makerprogram for the Macintosh @on.tfor other platforms.

When cT fetches an icon set, it keeps its own copy forplasting. There is a vengpecial commandferget
icons,filename that makes cT forget abotltis copy. Thiscommand is used bicon editor programs to
permit revising the icon set during a session.

There are two other ways to plot icons. You can use the "lcon" item on the "Font" menu to insert icons into a

-write- statement: give the name of the icons file, and a list of icon numbers separated by spaces and/or commas.
You can also use a -styleemmand toput icons into amarkervariable,andthen -show- thanarker variable.

93

GRAPHICS & TEXT

An example of showing icons in these waysisvided inthe sample programsstiibutedwith cT: japan.t
displays Japanese "Kaniji" characters, using a set of icons "KANJI18.FCT".

Example:
unit xicons
at 50,50
plot zk(F) $$ default icons
icons zicons
at 100,50
plot zk(F)
SeeAlso:
Making Icons on Macintosh (p. 95)
Making Icons on PC &Jnix (p. 96)
cursor The Mouse Pointer (p. 62)
font Selecting a Typeface (p. 43)
plot Plotting Characters and Icons (p. 94)
move MakingAnimations (p. 98)
style Assigning Styles to Markers (p. 262)
pattern Making Textured Areas (p. 61)
Generic Font Names B27)

plot: Plotting Characters and Icons

The -plot-command displaygons from the icon setpecified by an earlieicons- command, or gasted-in
image:

icons "myicons"
plot zk(A), zk(B), var+20
plot (pasted-in image) $$ no -icons- command needed

Individual icons within a setare numbered byhe icon editor. To display aiton, it is referred to by its
numericalcharactercodeor by using thezk function andthe character: zk(a)The command abovelots the
icons named A and B and icon number "var+20" from the current icon set.

Alternatively, you can paste an image into the tag of the -plot- command, which hedvéimagehat you can
see the image in the source program.

There are two other ways to plot icons. You can use the "lcon" item on the "Font" menu to insert icons into a
-write- statement: give the name of the icons file, and a list of icon numbers separated by spaces and/or commas.
You can also use a -style- command to put icons into a marker variable, and then -show- the marker variable.
The cT sample prograshowicon.tdisplays all the iconand patterns in an icons sahdshows thenumerical

code (0 to 127) for each icon. To plot icon number 97, use either -plot 97- orzlo}- (sincethe character

"b" has numerical code 97).

Example:

This example plots a figure over and over again, diagonally across the screen.

94

IMAGES

unit xplot
i: temp
icons zicons
loop temp := 15,300, 15
at temp, temp/2
. plot zk(F)
endloop
SeeAlso:
icons Selecting an Icon (p. 93)
move MakingAnimations (p. 98)
style Assigning Styles to Markers (p. 262)

Making Icons on Macintosh

The Macintosh applicatiolcon Makerprovidedwith cT is used to createsmall icons or totranslategraphic
imagesmadewith other applications into icons thatn be displayedising the -icons-, -plot-and move-
commands. It is also used to create cursors and fill patterns for -cursor- and -pattern- commands.

Creating anicons file: Start uplcon Maker Choose"New Mac" from the File menu. An Untitledvindow
opens up containing a list of icons. The icon list starts with numbers 0 through 3Xrdbeedshrough the
ASCII characterset of letters, digitsand punctuation marks. To display an icaetored inslot 3 near the
beginning of the list, use the statement -plot 3- in your cT program. To display astdoedh inslot "R", use
either -plot zk(R)- or -plot 82- (82 is the standard ASCII code for the letter R).

Creating an iconDouble-click a slot in the icon list. The "cT icomlindow opens up, in which yoaandraw
and erase with the mouse. Clickdrag to drawthe icon. The blaclsquares represent individyaikels. If you
start from a black square, clicking or dragging erases the pixels.

Specifying an originTo specify an origin (whiclwill be the positioningreference inyour cT program)glick
the Origin box, then click at the desired location within the icon. grag squareshows the locatiospecified
for the origin.

Storing an iconiTo store your icon into the icon list, choose "Save" on the Icon menu (nBtléhmenu), or
click the "close" box at the left of the titlear onthe cT icon window. Note that the File menuaissociated
with the icon-list window, while the Icon menu is associated with the cT icon window.

Cursors and patterndn order to use aiton as a cursor or a pattern, select an icon by clickiag slot, then
choose "Change type" on the Icon menu and specify all the ways you intend to use this icon.

Importing imagesYou can copy an image from the Scrapbook or other graphics application and paste it into an
icon slot inlcon Maker

Saving an icons fileWhenyou have finishednaking iconsandstoring them in the icon listchoose "Save"

from the File menu. You will be asked to choose a name for your icons file. If you call timeyfidens you

will need a statement of the form -icons "myicons"- in your cT program in order to select these icons for use by
-plot- and -move- commands. Similarly, this is the file name you use in -cursor- and -pattern- commands.

At a later time youcan reviseyour icons file by starting upcon Makerandchoosing "Open" from théile
menu.

The icons file should normally be stored in the same folder as any programs you write that use it.

95

GRAPHICS & TEXT

You may also find the sample programowicon.tuseful for inspecting an icons file.
Manipulating imported images inlcon Maker

Opening a Scratch window: Icon Makaiovides "Scratch" windows for manipulating large imagesi can cut

out pieces of the image to store in icon slots. Chdbssv" from the Scratch menandpaste an imagé&om

the Scrapbook or other graphiourceinto the Scratch window. Or choose "Open" from the Scratch menu to
choose an existing MacPaint-format or PICT-format file.

Selecting a portion of the imagsow you can select a portion of the image in the Scratodow by dragging
the mouse over thdesiredarea.The pixelsunderneattthe lines of the selection bate included inthe icon.
You can repeat thidragging to changthe boundingoox. Whenyou are satisfiedwith your selectionchoose
"Copy" from the Edit menu, then click the window containing the list of icons. Scroll tdegigedicon slot,
click that slot,andchoose "Paste" from the Edit menu to assign the image toslibiat You can repeat the
process (selecting a different bounding box) for the current image to create another icon.

Specifying an origintn order to specify an origin different from the upper-tatner ofthe image double-click
the slot in the icon list tedit the imageandspecify anorigin. For alargeicon you mayhave to usehe cT
icon scroll bars to move around in the image.

Transferring icons to other computerEhe "Fdb" options incon Makerare used to create opnvertbetween
Macintosh icon files and a machine-independent "Fdb" formatder to beable to transfeicons, cursors, and
fill patterns among different brands of computers. For example, if you are using an icons filenmgicwtson
the Macintosh and you want to move these iconsdifferent computer, usécon Makerto convert the file to
"Fdb" format, giving it the nameyicons.fdb Transfermyicons.fdbto the other computesind use itsicon
conversion program to convartyicons.fdhinto the form used on that computer.

SeeAlso:
icons Selecting an Icon (p. 93)

Making Icons on PC & Unix

The cT programcon.t providedwith cT is used to createsmall icons thatan be displayedsing the -icons-,
-plot-, and move- commands. It is alsesed to createursorsand fill patterns for -cursor- and pattern-
commands. Because this program handles binary files, there are different versions for different Unix platforms.

Creating anicons file: Run the cTprogramicon.t andchoose the option toreate anew cT icons file, or to
open an existing cT icons file. Tdisplay an iconstored inslot 3 nearthe beginning of the listuse the
statement -plot 3- in your cT program.

Creating an iconAfter specifying a file, you will see aumbered array oftons. Click an icon nhumbewhich

is the number you would use in a -plot-, -move-, -cursor-, or -pattern- command. If the icon is emp#yi| you
be asked for the width (x pixels) and height (y pixels)keétangulamreaopens up fodrawingthe icon. Click

or dragwith the mouse talrawthe icon. The littlesquares represent individugixels. If you start from an
already existing square, clicking or dragging erases the pixels.

Specifying an origin andpacing:Click "Options" tochangethe size of the icon, to specify an origiwhich

will be the positioning location in your cT program), or to specify the icon spacing Zivbarexand zwherey
change after a -plot- command).

96

IMAGES

Storing an iconWhen you have finished making an icon, click "Done." You will be askegther to save the
icons file at this time, which makes it possible to see the new icons in the numbered array of icondoiftyou
save the file at this point, you will still have the opportunity to save the file when you are finished editing.

Importing imagesNote thaticon.talso offers the option to convert an image file into a one-icon cT icons file.

Referring to anicons file: If the file is called myicons.fpc you will need astatement of the formicons
"myicons"- in your cT program in order to select these icons for use by -plot- and -move- conBicuildsly,
this is the file name you use in -cursor- and -pattern- commands.

At a later time you can revise your icons file by startingoom.tand selecting your existing file.
The icons file should normally be stored in the same folder as any programs you write that use it.
You may also find the sample programowicon.tuseful for inspecting an icons file.

Transferring icons to other computetéyou have Macintosh images to transfer to B, use thelcon Maker
application on the Macintosh to convert the icons to the "FDB" format, whichriachine-independerform.
Transferthis convertedfile to the PC. Runthe programicon.t andchoose "Convert." Then click "Convert
FDB -> FPC" and choose the file you want to convert. If the file nanmeyisons.fdb the convertedfile will
be namednyicons.fpcIn your program, use the namegiconsin -icons-, -pattern-and €ursor- commands.
Similarly, you can us&on.tto convert a PC icons file to theachine-independefDB form, which you can
transfer to other computers and convert into cT icons.

SeeAlso:
icons Selecting an Icon (p. 93)

97

GRAPHICS & TEXT
Animations

move: Making Animations

The -move- command creates an animated display by moving icons from one place to another. On multi-process
computers it can be difficult to get a smooth animation, due to interruptions from other processes. The internal
workings of the -moveeommand (whichyou don'tsee)attempt to compensate for thigiosyncrasies of the

system, whereas an animation created by separately writing (in mode write) and erasiode(iaraseinay not

work very well.

icons "myicons" $$ need -icons- command before using -move-
move icons: ; to;object

move icons: from; topbject

move icons: from; to; old; new

Currently, the only initial keyword available f&cons". Someday, we hope to be able to move other types of
objects, such as an area of the screen or the display generatadiby/Aso see"Animation with getand put"
for another way to make animations.

The "objects" are character numbers from an icon set specified by an ézolier command. An "object" may
include severaicons. Thecharactemumbers may be given as numbers, variables, @etteknamé. In both
lines below, the "old object" is AB and the "new object" is ab.

move icons: x,y; p,q; 97,98, 566
move icons: Xx,y;p,q;zk(A),zk(B);zk(a),zk(b)

The "from" and"to" arguments give the startirapdendingpositions of the object. If the "from" position is
omitted, it is set to theurrent screeposition. Theformat thatomits the "from" position isvery common,
because you are usually moving the object from "where it is now" to gasition. Thesetwo statements are
equivalent:

move icons: ;X,yzk(A)
move icons: zwherex,zwherey; x,y; zk(A)

The -move- command removes the icapecified by "old"object from the "from" location. It then writes the
icons specified in"new" object at the "to" location. inly one "object" argument is given, the nawd old
objects are the same.

The graphics mode used for removing old icons depends on the current mode (set by the -mode- command):

write <--> erase
xor <--> xor
rewrite <--> inverse

When using a -loop- to move objects, it is sometimes inconvenient to establish a "from location" for use by the
first iteration of the -move- command. Themooand inhibit startdraw-prevents the first item from being
removed.

In the sample programnimate.tdistributedwith cT is an example of how to usget- and -put- to move

rectangular objects around on the screen while restoringattigground, sdhat the object seems wlide over
the screen. The sample progrBigForty.tis a solitaire card game that -usarsmate.tfor dragging cards.

98

ANIMATIONS

Example:

unit xmovel 3 move a ball across screen
ir X

icons zicons

loop X := 50, 250, 3 $$ move 3 pixels at a time
move icons: ; x,100; zk(D)
pause .02

endloop

unit xmove2 3 using different modes
i: X, temp

icons zicons

loop temp := -1, 3$different mode each time
fill 78,28;206,184 $olid area
at 10,10; 60,25 $$how mode
write \temp\write\rewrite\xor\erase\inverse
mode \temp\write\rewrite\xor\erase\inverse
inhibit startdraw $%lse leaves icon
loop X := 50, 240, 2

move icons: ; x,100; zk(F)
pause .02

endloop
mode write $$ back to default
at 75,200
write Press a key.
pause keys=all $Hait for key
erase $3ull-screen erase

endloop

*

Alternating iconsrequiretwo -move- commands. Noticthat the "to" positionfor one -move- becomes the
"from" position for the next -move-. The path of the moved object need not be in a straighteliathe path
is a parabola.

unit xmove3 $$ alternating icons
i: X,y
icons zicons
loop X := 50, 250, 4
calc y :=20+((x+2) -150)"2/100
$$ remove "up arrow" (85) and display "down arrow" (86)
move icons: ; x+2,y; 85; 86
pause 0.05 $need to slow it down a bit
calc y :=20+((x+4) -150)"2/100
$$ remove "down arrow" and display "up arrow"
move icons: ; x+4, y; 86; 85
pause 0.05
endloop

99

GRAPHICS & TEXT

When moving objects along two different pathways, both the "from" and "to" positions must be given. The first

-move- moves along a straight line. The second -move- makes a semicircle @Jsirig')-g 02). A graphing
origin is set; the default graph scaling is used.

unit xmove4 $$ two pathways
i: X,y, oldx,oldy
icons zicons
gorigin 125,100 $$ graphing origin
loop x :=-100,100, 1
calc y :=sqrt(10000-x"2)
gmove icons: oldx,0; x,0; zk(F)
gmove icons: oldx, oldy; x,y; zk(F)
calc oldx :=x $$ save x
oldy :=y $$ save radius
endloop
*
SeeAlso:
icons Selecting an Icon (p- 93)
plot Plotting Characters and Icons (p- 94)
inhibit/allow startdraw (p. 66)
get and put Portions of Screen (p- 89)

Animations with get and put

The -get-and -put- commandsan be used tanove objectsaround onthe screenwithout changing the
background. The basic idea is to use -get- to save the background, then display the object using -put- or -plot- or
-move- (possibly through a -clip-), pause for the object to be seen, then use -4@stotethe background to

its original state.

In the sample programnimate.tdistributedwith cT is an example of how to usget- and -put- to move
rectangular objects around on the screen while restoringattigground insuch a way that the object seems to
glide smoothly over the screen on computers #nafast enough. The program &tructured to beisable as a
-use-file in connection with your own programs. The sample progBigtorty.t distributedwith cT is a
solitaire card game that -usessimate.tfor dragging cards and offers a choice among several animation schemes.

The following example shows the bagiea, but there is flickeringdue toseeing thebackgroundwithout the
moving objectfor a brief instant. Theappropriate curdor this flickering is to be able to do some of the
graphics manipulations off-screen where the eye doesn't see the changes being made, and it is infahded that
versions of cT will let you do this. The scheme useanimate.tis to use -clip- in a subtle way so ttaitanges

are made only at the edges of theving object, so that only thedgesflicker, andthe animation lookguite
smooth (on fast-enough computers).

Examples:

unit xgetanimate
screen: boxtext, ring, save
i: X,y

color zred

at 10,20

write Here is some text.

calc X :=zwherex

box 10,20; x,35

100

ANIMATIONS

get boxtext; 10,20; 120,35 $$ save the text
put boxtext; 70, 60 $$ place additional copies of text
put boxtext; 130,100
color zblue
box 0,70; 60,130; -3
color zgreen
at 30,100
disk 25
mode erase
disk 15 $$make a hole in the disk to make a ring
mode write
get ring; 0,70; 60,130 $$ save the ring
color zdefaultf
at 31,146
write Drag the ring with the mouse.
pause keys=touch
calc X :=ztouchx
y := ztouchy
loop
get save; X,y; X+60,y+60 3 save the background
put ring; x,y
pause keys=touch(left: move,up)
put save; X,y $$ restore the background
outloop zkey = zk(left: up)
calc X :=ztouchx
y := ztouchy
endloop
SeeAlso:
move MakingAnimations (p. 98)
get and put Portions of Screen (p- 89)

101

GRAPHICS & TEXT
Making a Graph

Plotting a Graph

The "graphing” family ofcommands isdesignedfor plotting graphs but is usefulvheneveryou want to

establish your own origirand coordinategrid. The graphing commandst you refer to the actual viaes
represented by a point, such as height and weight, rather than absolute screen positions. Thus, after initializing a
graphing grid, a point in a height versus weight display could be given as 65,145 for 65 inches and 145 pounds.

The following example puts together the key graphing commands needed to draw graphs, including bar graphs:

Example:
unit xgraph $¥plot a function on labeled axes
float: x
color zdefaultf
gorigin 40,170 $$ graph origin
axes 185,150 $3 lengths of x- and y-axes
scalex 100 $3 axis represents 100 units
scaley 10 3 waxis represents 10 units
labelx 25,5 $$ major marks every 25, minor every 5
labely 2,1 $$ major marks every 2, minor every 1
inhibit startdraw $Hirst iteration just positions
color zred
thick 2
loop x:=0, 100, 2 $$0to 100 by 2's
* draw connected lines on graphing grid:
gdraw iX,5+4cos(.2x)exp(-.01x)
endloop
thick
color zblue
delta 2 $width of vertical bars
loop x :=0, 100, 2PI/.2 $$ at maxima
* display vertical bar at maxima of curve:
vbar x5+4cos(.2x)exp(-.01x)
endloop
SeeAlso:
Graphing Commands (A02)
Plot Two User Functions Simultaneously (p. 281)
Plotting Parametric Equations (p. 282)
Relative Graphics Commands (p. 112)

Graphing Commands

All of the ordinarygraphics commands can heedwith graphingcoordinates. The graphing form sefixed
with "g". For example,gdraw- isthe graphing version of thedraw- command. If coordinateare given as
floating-point values (numbers with fractions), pixel positions are rounded to the nearest pixel.

The commands belowse the same syntax as the absoba@rdinategraphing commands. The description of

-vector- also applies to -gvectoretc., but note that the blank-tag -gb@ommanddraws aframe around the

102

MAKING A GRAPH

graphing regionwhereasthe blank-tag -boxcommanddraws aframe aroundthe area defined bythe {fine-
command.

garrow gbutton gdisk gerase gput
gat gcircle gdot gfill gslider
gatnm gcircleb gdraw gget gtext
gbox gclip gedit gmove gvector

In addition, these commands are specifically for use with the graphing coordinates:

axes scalex markx gorigin
bounds scaley marky Iscalex
delta labelx hbar Iscaley
polar labely vbar

The systemvariables relating to mouse location alsave graphing form&dentified with "g". All system
variables have the prefix "z", so the "g" in this case is the second letter:

zgtouchx, zgtouchy
These system variables give the mouse location in terms of the graphing grid in effect at the time the event was

accepted (for example, by a -pause- command), not the graphing grid in effect at the time you wseidhlese
(which might be different due to changing the graphing grid after the -pause-).

SeeAlso:
Plotting a Graph (p. 102)
Plot Two User Functions Simultaneously (p. 281)
Plotting Parametric Equations (p. 282)
Relative Graphics Commands (p. 112)

Graphing Defaults

The default values for graphing are set at the beginning as if your program had executed these commands:

gorigin 0,0
bounds 100,100
scalex 100
scaley -100
polar FALSE

When the default valuesre in effect, the graphingcommands (such as -gbox- gdraw-)behavejust like the
absolute graphics commands (such as -boxd@w-). These defaultvaluesarenot reset at the start of a new
main unit.

The default value of -delta- is one minor mark. If the minor mark is Odefaultvalue is 5% of the positive
axis length.

gorigin: Setting the Origin

The -gorigin-command specifiethe (x,y) position of the origin of a graphimgordinatesystem. Thevalues
given in the tag are actual screen positions. The values giveaixbg- -are screasistancesAll other graphing
coordinates are given in scaled values relative to the -gorigin-.

103

GRAPHICS & TEXT

gorigin X-position, y-position
gorigin 235,420
gorigin 3 (blank tag)

The blank-tag form of -gorigin- sets the origin of the graph to tuerent screenposition (to
"zwherex,zwherey"). The -gorigin- position is set to "0,0" at the beginning of the program.

After a -gorigin- command the current screen position is set to the graph origin.

SeeAlso:
Graphics Introduction & Defaults (p. 32)

axes: Describing the Axes

The axes- commandpecifies the lengths of thaxesand causesthem to bedisplayed onthe screen. The
crossing point of the axes is at the position specified by -gorigin-.

axes X-positive, y-positive
axes X-negative,y-negative; x-pos,y-pos
axes $&lisplay previous axes

When the tag of theaxes- commantias two arguments, only positive andy-axesaredisplayed. When the
-axes- commantias four arguments, the axestend inboth the positiveand negative directions from the
graphing origin. The blank tag form of -axes- displays the axes set by a previous -axes- or -bounds- command.
The axis lengths are given in screen units, not explicit screen positions.

The command -axes 300,400- displays a positive x-axiss@@@nunits longextending tothe right from the

origin and apositive y-axis 400screenunits long extendingupward from the origin. Nonegative axes are
shown.

In the command -axes -200,0; 200,400-, the negative x-axis is -200, while the negative y-axis isd@&sThe
drawn have both positive and negative x-axes, but only a positive y-axis.

NOTE: The -axes- commandbes notefine a restricted area for graphimpints thatare"off the graph" may
be displayed. Use -clip- or -gclip- to restrict the graphing area.

Once axewvaluesare set with an axes- or -boundssommand, they retain these values for the eptiogram
unless explicitly changed with a new -axes- or -bounds- command. When the prognaterad, a default value
is set with -bounds 1,1-.

After an -axes- command the current screen position is set to the graph origin.

The thickness of the axes can be specified with a -thick- command.

Examples:

The first unit sets the origin and displays positive axes only. The x-axis is feghwsaits (dots)long and the
y-axis is 100 screen units (dots) long. The second unit has both positive and negative axes.

unit Xaxes
gorigin 50,125 $$ set graph origin

104

MAKING A GRAPH

axes 150,100 3 set & display axes
unit xaxes2
gorigin 75,150
axes -50,-50; 150,100
SeeAlso:
thick Line Thickness (p. 62)

bounds: Specifying Axes Lengths

The -bounds- command specifies the lengths of the axes but does not display them on the sccearmdit
has the same format as the -axes- command.

bounds X-positive, y-positive
bounds X-negative, y-negative; x-pos, y-pos

Minor Point: Sincethere is no requiremettiat a graptposition be"inside" thespecifiedaxes, the onlyreal

effect of -bounds- is to set endpoints thatalex-and scaley- caruse tocalculatethe relative scales for the x-

and y-axes. Thus it is not necessary to have negative argumenttedods-unless youintend to use #lank-

tag -axes- command later in the program. However, for program design and internal documentation it is useful to
have -bounds- describe the actual area that you intend to use.

scalex: Setting the Scales

The scalex-and scaley- commands provide a waydatomatically convert quantitiesxpressed inyour own
convenient units (such as meters, pounds, minutes, etscra¢enpixel coordinates. Afteyou haveset up the
graphing environment using -gorigiand axes- (or -bounds-jhe scalex-and scaley- commands specify the
maximum x- and y-values on the positive axes and specify the value at the origin.

scalex X-maximum
scaley y-maximum
scalex X-maximum, axis-crossing
scaley y-maximum, axis-crossing

The first argument of the tag gives the x- or y- value that will appear at the "positive" (the right or the top) end
of the axis. The second argument of the tag, "axis-crossing”, gives the value thatoshouldtthe origin. If
the second argument is omitted, the value at the origin is 0.

Usually only the x-maximum and y-maximum are given:

scalex 500
scaley 10

If the length of the positive axis is 0, then the "x-maximum" or "y-maximum" argument gives the value at the
end of the negative axis. In the example below, the positive x-axis has length 0. Therefefegtideof the x-
axis is -50.

axes -200,0;0,200
scalex -50

105

GRAPHICS & TEXT

NOTE: Except in the special case shown by the example just above, the values at the negative eaglssof the
are determined by the positive endthé axis, the value at the origiandthe relative lengths of the axes. To
adjust the value at the negative end of the axis, you must change the -axes- command.

Examples:

unit
gorigin
axes
scalex
scaley
labelx
labely
*

xscalex

75,150

-50, -100; 150, 100
50

4

10

1

If you were plotting literacy rateversus time, thegraph might start as shown below. The positixexis
represents the interval 1900-2000, and the negative x-axis represents 1850-1900.

unit
gorigin
axes
scalex
scaley
labelx
labely
*

labelx: Putting Labels on the

xscalex2
100,150

-60,0; 120,125

2000,1900
100

50,10

50

AXxes

The -labelx-and {abely- commandare used tadisplay labelsand tick marks along the xand y-axes. The
-markx- and -marky- commands do not write numbers; they only make tick marks.

labelx
labely

markx
marky

major, minor, tick style, precise
major, minor, tick style, precise

major, minor, tick style, precise
major, minor, tick style, precise

Only the first argument of the tag is required; the other arguments are set to 0 when omitted.

labelx
labelx
labelx
labelx
markx
markx
markx

10 $$ value and tick mark every 10

10,5 $$minor tick mark every 5

10,5,2 $%all tick marks extend to edge

10,5,2, TRUE $tart numbering at origin
25 $dmajor tick marks every 25

25,5 $$minor tick mark every 5

25,5,1 $3dmajor marks extend to the edge

The first argumentmajor mark interval, specifies the interval at which number labaigl "major" tick
marks are displayed. If the first argument is 0, no labels or tick marks are displayed.

106

MAKING A GRAPH

The second argumeninor mark interval, specifies the interval at which "minor" tick mark® shown,
but no numbers are displayed. If this argument is 0, or omitted if it is the last argument, no mingarkisk
are displayed.

The third argumentiick mark style, specifies how the tick markare displayed. Itmay be 0, 1, 2, or
omitted if it is the last argument. For O or omitted, the tick markshort lines. The major tick maidrosses
the axis, while the minor tick mark is on only oside ofthe axis.Whenthe argument is 1, the major tick
marks extend from one side of the graph to the other. If the argument is 2, all tickextarid tothe edges of
the graph.

The fourth argumentiabel precision, controls the selection of display intervalien the origin is not at 0.
The defaultcase isFALSE. In thedefaultcase, labelareshown on integemultiples of the major interval.
That is, for an interval of 10, the values shown would be . . -30, -20, -10, 0, 10, 20, 3@gardless of the
value chosen for the origin. If the fourth argument is set to TRUE i&habd -1), the numbering iforced to
start at the origin.

After -labelx-, -labely-, -markx-, and -marky- the current screen position is set to the graph origin.

The thickness of the tick marks can be specified with a -thick- command.

Examples:

This example puts labels every 10 along the x-axisemady 25along the y-axis. Along the y-axis, tineajor
marks are extended across the graph.

unit xlabelx0

gorigin 100,175

axes -70,-100; 140,150
scalex 40

scaley 100

labelx 10,5

labely 25,10,1

The next two examples illustrate the effect of the "precise" argument. In unit xlabelx1, the "precise" argument is
omitted (assumed to bEALSE). The x-axis labelare 1970, 1980, & 1990. Minor markappear atl965,
1975, 1985, and 1995. Note that there is no label on the x-axis at the origin.

unit xlabelx1

gorigin 50,175

axes 170,150

scalex 1995, 1965

scaley 100

labelx 10,5 $$precise FALSE by default

labely 50,10

In unit xlabelx2, the labels are 1965, 1975, 1985, and 1995, with minor marks at 1970, 1980, and 1990.

unit xlabelx2
gorigin 50,175
axes 170,150
scalex 1995, 1965
scaley 100

107

GRAPHICS & TEXT

labelx 10,5,0,TRUE $Precise TRUE
labely 50,10

SeeAlso:
thick Line Thickness (p. 62)

Iscalex: Semi-Log and Log-Log Scales

The -Iscalex- and -Iscaley- commands change the x- and y-scales of a gtaglstales. Either the x-scale, the
y-scale, or both may use log scaling.

Log scaling does not permit unusual intervals. The odgifthe endpoints of the axeseinteger powers of
10: 102, 101, 1, 10, 100, 100Cetc.

Examples:
unit xsemilog $&emi-log graph
gorigin 30,250
axes 200,200
Iscalex 100 $3og scale
scaley 100 $$egular scale
labelx 10,10,2
labely 10,51
*
unit xloglog $$log-log graph
gorigin 35,225
axes 200,200
Iscalex 10" (-3), 107(-5) $$ 2 decades on x-axis
Iscaley 1000 $$ 3 decades on y-axis
labelx 10,10,2
labely 10,10,2
*

Labeling Log Scales

The general format of -labelx- and -labely- does not change i@lgencaling is ineffect, but less flexibility is
available. The command -labelx 10,10- usually makes satisfactory labels.

Log scalingdoesnot permit unusual intervals. The origamd maximum of a logscalearealways at integer
powers of10. Log scales always have labels the integer powers 010, so themajor-mark argument is
ignored. It is conventionally given as 10.

The minor marks may be shown in one of these patterns:
tag is 0 minor marks not plotted
tagis 3 minor marks at 1, 2, 5
tagis5 minor marks atl, 2,3,5,7
tag is 10 minor marks at 1, 2, 3,4,5,6,7,8,9

The interpretation of the third argument, length of tick marks, does not change for log scales: 0 means short tick
marks, 1 extends major marks, and 2 extends both major and minor marks.

108

MAKING A GRAPH

Example
unit xloglabel
gorigin 30,225
axes 200,200

Iscalex 1000
Iscaley 100

labelx 10,10 3 all minor marks shown
labely 10,3,2 $3minor marks only at 1,2,5
gbox 3 outline graph area

polar: Polar Coordinates

The -polar-command changethe interpretation of the "x,ytoordinatesfrom rectilinearcoordinates to the
"radius,angle" interpretation of polar coordinates.

polar TRUE $$start polar plotting
polar FALSE $$ return to (x,y)

The angle is normally measured in degrees, butdhemand-inhibit degree-changes taadianmeasure. Using
radians is often convenient for consistency with rddiansthat are alwaysused inthe trigonometric functions
(sine, cosine, arctan, etc.).

Example

This example draws a spiral. As the angle gets larger, the distance from the origin (the length of the line in the
-gdraw-) also gets larger. The spiral is narrowed because the x-axis is shorter than the y-axis.

unit Xpolar
i: angle
gorigin 125,200
axes -100,0; 100,150
polar TRUE $$start polar
scalex 10
scaley 10
labelx 5,1
labely 5,1
gat 0,0
loop angle := 0, 1080, 15
. gdraw ;angle/200, angle
endloop
polar FALSE $$ return to rectilinear coordinates
*
SeeAlso:

inhibit/allow degree (p. 70)

109

GRAPHICS & TEXT

hbar: Bar Gr aphs

The -hbar- and -vbar- commands draw horizontal and vertical bargrapla. The delta- commandpecifies the
thickness of the bar. Several bars may digplayedwith one command by separatinthe points with
semicolons. If the tag starts with a semicolon, the first bar is positioned at the current screen position.

hbar xvalue,yvalue 3 horizontal
vbar 15,3 $dvertical
vbar ;7,5; 10,7; 8,3 $$ multiplbars

Oneend ofthe bar is always athe axis. The otheend ofthe bar is atthe position given in the tag of the
command. After an -hbar- or -vbar-, the current screen position is set to the last point mentioned.

Ordinarily the bars are solid black. The -pattern- command may be used to specify a pattern for filling the bars.

NOTES: These commands always relatetaphing coordinateShere are nacorresponding commands in the
absolute or relative coordinate systems. Do not use -hbar- and -vbar- with polar coordinates.

Examples:
unit xhbar
gorigin 50,200
axes 150,150
scalex 20
scaley 10
labelx 10,5
labely 51
hbar 5,10; 10,8; 13,7; 15,5; 13,3; 7,1
*
unit xvbar
gorigin 30,200
axes 200,150
scalex 50
scaley 20
pattern zpatterns,4
vbar 0,-3; 10,4; 20,8; 30,7; 40,10; 50,8
gdraw 0,-3; 10,4; 20,8; 30,7; 40,10; 50,8
*
SeeAlso:
pattern Making Textured Areas (p. 61)
delta Bar Width (p. 110)

delta: Bar Width

The -delta- command specifies the thickness of the bars displayed by -hbar- and -vidhieKnless isspecified
with respect to the scale set by -scalex- (vbar) and by -scaley- (hbar). A delta of "2" specifies 2 units of thickness
according to the scale on relevant axis. If -delta- is omitted or set to 0, the default values are used.

Default scaling: When there is no -delta- command, the thickness i®al toone "minor mark'interval

as specified by the -labelx- (vbar) or -labely- (hbar) command. Ifrtfieor mark” is 0, the thickness is set to
5% of the axis length.

110

MAKING A GRAPH

Log scaling: Values along a log scale are retenly spaced, so -deltaralues along a log axis mubkave a
different interpretation. The value given by -deltainterpreted ashe percent of 1decadeThe defaultvalue is
10% of 1 decade.

For example, if the x-axis uses a log scale that runs from 1 to 1000, it covers 3 decades (1-10ad®10009,
1000). If the x-axis is 300 screen units long, 1 decade is 100 screen units, defatitte-delta-value for vbar-
is 10 screen units.

Example:
unit xdelta
gorigin 125,175
axes -100,0; 100,150
scalex 20
scaley 10
labelx 10,5
labely 5,1
hbar 20,1 $$default thickness
delta 2
hbar 13,5 $$ 2units thick
delta 0.5
hbar -17,8 $$.5 units thick

111

GRAPHICS & TEXT
Relative Graphics Commands

Introduction to Relative Graphics Commands

Relative commandsare graphics commandghat are drawnwith respect to a0,0 point established by an
-rorigin - commandand whose sizeand orientationare affected by size and rotate- commands.These
commands are very useful when one design must be drawn at a nundifezrexfit positions, sizesandangles.
If coordinates argiven as floating-point values (numbers with fractions), pixel posit@mesrounded to the
nearest pixel.

All of the graphics commandhat are prefixedwith "r"* (the "r-type" commandsjollow the same formats as
their absolute counterparts.

rarrow rbutton rdisk rerase rput
rat rcircle rdot rfill rslider
ratnm rcircleb rdraw rget rtext
rbox rclip redit rmove rvector

NOTE: -rdisk- does not work correctly when it is rotated.

The systemvariables relating to mousgosition alsohave relative formsdentified with "r". All system
variables have the prefix "z", so the "r" in this case is the second letter:

zrtouchx, zrtouchy
Thesesystemvariables give the mouse location in terms of the relatdbardinates in effect ahe time the

event was accepted (for example, by a -pause- commawtd)herelative coordinates ieffect atthe time you
use these variables (which might be different due to changing the origin or size or rotation after the -pause-).

Example:
unit Xrtype
color zblue
rorigin 60,120
do xclown $$ display first clown
color zred
rorigin 185,110
rotate 30 $$hange angle & size
size 1, .7
do xclown $$ display second clown
rotate 0
size 1 $&lways return to size=1, rotate=0
unit xclown
rat 0,0
rcircle 40
rcircleb 27,40,140
rdraw -20,-35; 36,-88; 37,-18
rvector -17,0; -17,-16; 15
rvector 15,0; 15,-16; 15
rfill 0,0; -7,7; 0,14; 7,7
rbox -50,-100; 50,50; 4

*

112

RELATIVE GRAPHICS COMMANDS

rorigin: Setting the Origin

The -rorigin-command specifies acreenposition thatserves as th&0,0" position for all of the relative
commands.

rorigin 150,150
rorigin $$ set to "zwherex, zwherey"

The location of the -rorigin- is given in absolute coordinates fromugiper-left corner. Ithe tag is blank, the
-rorigin- is set to the current screen positiéfter the -rorigin- command, theurrent screeiposition is at the
relative origin.

Once an rorigin- has beerset, it remains sdbr the rest of the program unleshanged by anew -rorigin-
command. The default -rorigin- is at 0,0.

size: Rescaling a Display
The -size- commands affects the relative commands (all of the graphics commands prefixed with an "r").

size value
size x-value, y-value

The tag of the sizeommandmay have one otwo argumentsWhen only one argument is given, trsze
affects both the x- and y- coordinates. When two arguments are given, the first argument is the multiplier for x
and the second is the multiplier for y. The default size is 1; always return to -size 1- after a special display.

Example:

The two -rdraw- statements are exactly the same, but the environment has been modified by -rorigin- and -size-.

unit Xsize

rorigin 50,150

rdraw 0,0; 25,-25; 50,0; 25,25; 0,0
rorigin 150,150

size 2,4

rdraw 0,0; 25,-25; 50,0; 25,25; 0,0
size 1

*

rotate: Rotating a Display

The -rotate- command affects the relative commands (all of the graphics commands prefixed with an "r").
rotate angle $&angle is normally expressed in degrees

The anglesare measuredlockwise from a horizontdine. Angles irease inthe direction of increasing y-

values. Math conventions usuallyave y-values increasing upwards, leading dngles thatincrease

counterclockwise. However, since y increases downwards, cT angles increase in the clockwise direction.

The default angle for -rotate- is 0. You should always return to -rotatéted-aspecial display or later displays
may surprise you!

113

GRAPHICS & TEXT

The angle is normally measured in degrees, butdhemand-inhibit degree-changes taadianmeasure. Using
radians is often convenient for consistency with rddiansthat are alwaysused inthe trigonometric functions
(sine, cosine, arctan, etc.).

Example:

First a sailboat is drawn relative to the -rorigin- at 100,100. Then the -rorigin- is reset to 2&@j1aAate- is
set. The second sailboat is rotated by 45 degrees.

unit Xrotate
rorigin 100,100
do sailboat $$ draw boat
rorigin 200,100
rotate 45
do sailboat $$ draw boat
rotate 0 $$ reset -rotate-
unit sailboat
rbox 0,0; 80,-20
rdraw 60,-20; 60,-90; 10,-30; 60,-30
rat 45,-50
rcircle 8

SeeAlso:

inhibit/allow degree (p. 70)

rcircle: Relative Circles

The formats of the -rcircle- and -rcircleb- commands are the same as the formats of the -circle- command:

rcircle radius
rcircle radius, begin arc, finish arc
rcircle x1,y1; x2,y2 $% ellipse

The actual sizeand position of the rcircle- depends onsize- and fotate-. The starnd finish of arcs are
measured in degrees. If the -size- is different for the x and y directions, -rcircle radius- displays an ellipse.

In the form ¢circle x1,yl; x2,y2-,the ellipsecannotbe rotatecbut causes an execution error. However, the
other form of -rcirclecanbe rotated.

Examples:
unit xrcircle $$default size & rotation
next xrcircle2
at 50,15
write y increasesawnward
rorigin 100,150
do xCirclePic
*
unit xCirclePic $$ draw circle picture
rat 0,0
rcircle 100, 0,75

114

RELATIVE GRAPHICS COMMANDS

rdraw 0,0; 150,0 $3% line along +x axis

rvector 0,0; 0,100 3 vector along +y axis

unit xrcircle2 $Pexample with size change

next xrcircle3

at 50,15

write size 1,-1 makes positive y go upward

rorigin 100,150

size 1-1 $$ reverse y orientation

do xCirclePic

size 1 $Heset to default size

unit xrcircle3 $Pexample with rotation

next xrcircle4

rorigin 100,150

at 50,15

write +y downward, rotate 30 degrees

rotate 30 $Potate 30 degrees in +y direction
do xCirclePic

rotate 0 $3 reset to default

rdraw 20,0;50,0;skip;60,0;90,0;skip;100,0;130,0;skip;140,0;170,0
unit xrcircle4 $$example with both size & rotation
next xrcircle

at 50,15

write +y upward, rotate 30 degrees

rorigin 100,150

size 1,-1 $$ positive y upward

rotate 30 $Potate 30 degrees in +y direction
do xCirclePic

size 1 $Heset size to default

rotate 0 $Feset rotation to default

rdraw 20,0;50,0;skip;60,0;90,0;skip;100,0;130,0;skip;140,0;170,0

*

rtext: Sizing of Text

The -rtext- command is just like the -text- command except that the fonsedemedor the text isaffected by
the -size- command.

The -rtext-commandcannotbe rotatedUsing +text- when -rotatehas beerset to anonzero value causes an
execution error.

Example:
unit xrtext
rorigin 50,20
rbox 0,0; 150,40
rtext 0,0; 150,40

Here is some text in an -rtext- command.
\

rbox 0,50; 150,130

rat 0,50; 150,130

115

GRAPHICS & TEXT

size 1.5 $dncrease size by 1 1/2

rtext

The -size- command affects this text, but not the margins.
\

rbox 0,100; 150,150
rtext 0,100; 150,150 $$ these positions are in "size 1.5"
Both the margins and the size are affected by the -size- command.
\
size 1 $Feturn to default size
SeeAlso:
text Putting Text on the Screen (p. 39)
font Selecting a Typeface (p. 43)

116

VIDEO COMMANDS

3. Video & Sound

Video Commands

video: Initialize Video

cT can display video in QuickTime format @ideo for Windows (versiorl.1 or later). Thevideo- command
selects a movie file to be played:

video movie; "Cartoonl" $$ select file "Cartoonl" to play as a movie
video $3cancel video (stops playing; makes controller inactive)

You canalso specify aectangle wher¢he movie will bedisplayed,and inthat caseaddkeywords to specify
additional options (or use a later -vset- command to set or reset these options):

video movie; "Cartoonl"; x1,y1; x2,y2; keyword; keyword; etc.
The following command will play an entire movie file, scaled to fit the rectangle:
video movie; "Paris"; 10,20; 200,150; play
The keyword options for the -video- command are

scale movie is scaled to fit specified rectangle, changing aspect if necessary
(this is the default)

no scale no scaling; if rectangle small, only upper-left video portion visible
center no scaling; movie is centered in specified rectangle

sound control sound volume (sound,volume -- where volume is 0 to 100)
(volume = -1 sets to default volume for this video)

play play the entire movie
(default is NOT to play, in which case use a subsequent -vplay-)

loop whenever end of movie is reached, start over from beginning
"loop" or "loop,variable" where variable is TRUE or FALSE
(default is NOT to loop)

controller (orctrl) displays video controller (scroll bar, etc.)
(controller placed under image; default is that there is no controller)
If there isn't enough room for a controller, zreturn = 18.

ctrl rect place controller at specified location rather than under image
(ctrl rect, x1,y1; x2,y2 -- height however is zvcheight)

palette use palette that is included in the movie, if there is one

"palette” or "palette,variable"; variable is TRUE or FALSE
(default is TRUE, movie does use an included palette)

117

VIDEO & SOUND

The -video- command chooses the video to be displayed, after which -vplay-, -vshow-, and -vstep- commands can
be used tglay video sequenceshow a still frame, or step fovard or backward.The -vset-command can
modify various video options.

There are several system variables associated with the -video- command:

zvtime 3 gives the current time from the start of the selected movie
zvlength $$ gives the length (in seconds) of the selected movie
zvwidth 3 gives the full horizontal size (pixels) of the selected movie
zvheight $$ gives the full vertical size (pixels) of the selected movie
zvcheight $$ gives the vertical height (pixels) of the movie controller
zvplaying $$ TRUE while video (or sound only) is playing

You can play a movie in its full unscaled size with the following statements:

video movie; "MyFilm" $$ sets up zvwidth & zvheight
vset rectangle, 10,30; 10+zvwidth-1,30+zvheight-1; no scale
vplay

The video rectangle refers only to the video image; if you specify a video controller, it is placed béioagthe
(unless placed elsewhere using the "ctrl rect" option) and has a height gizechieyght

Effect of -clip-: If there is a elip- command ineffect atthe time of specifying théisplay rectanglevith a
-video- or vset- command, the displagctangle isaffected bythe -clip- region,and the video controller is
shrunk to fit within the clipped region. You can use this to play just the right side of a movie, for example.

When video is shown on color-palette machines (typically 256-color machinedgfduyttthe video- command
installs a palette included in the movie if there is one, which can affect other displays on the sg@edoift
want this to happen, choose the "palette, FALSE" option.

When running on Windows, &/ideo for Windows file must havethe file extension ".avi" inorder to be
recognized as a video file. Suppose the Video for Winddeisxame is "racer.avi“andyou have arequivalent
QuickTime movie named "racer” on a Macintosh. Just use the name "racer" in the -video- commandyiiind cT
automatically append the ".avi" when running on Windows, so you don't have to change the -video- command.

The -video- command setseturn in the same way as file operations, with Huglitionthat zreturn = 20 for
"operation notsupported” ifyou try to play a movie on a machine that doesatte QuickTime oilideo for
Windows installed.

Executing a new -video- command stops any video already in progress.
In the sample prograndistributedwith cT, video.tgives an example of how toreateyour own specialized

video controllerusing the basizvideo commands. Ashort video clip for testing purposes iprovided with
video.tfor Macintosh and Windows.

Example:

unit xvideo
i: curTime
file: choose

loop
setfile choose; zempty; ro $$ choose a movie file
outloop zreturn
if zreturn = 18

118

VIDEO COMMANDS

at 5,5
write Need bigger window.
pause
else
jumpout
endif
endloop
color zblue
box 30,30; 230,230;5
color zblack
video movie; zfilepath(choose)+zfilename(choose); 30,30; 230,230; play
at 30,240
write Hit "s" to stop
* Wait for end of movie, or hitting "s":
loop
pause .2,keys=s
outloop zkey = zK(s) | (zvtime >= zvlength)
endloop
erase 30,240; 230,270
calc curTime := zvlength/10
vshow curTime $$show a frame
* Skip through movie till we get to something we like:
at 30,10
write Hit "p" to play, any other key to skip
loop
pause $$vait for any key
outloop zkey = zk(p) $$ weaot a play request
calc curTime := curTime + zvlength/10
vshow curTime $$show a frame further on
endloop

* We've gotten to the interesting part,
* play until user hits another key:

vplay zvtime 3 now start player where we are
pause $%when user hits another key...
vshow zvtime 3 stop the movie
SeeAlso:
vset Modify Video Options (p119)
vplay Play a Video Sequence (p. 120)
vshow Show a SinglErame (p. 121)
vstep Video Stepping (p. 121)

Video Status (p. 327)

vset: Modify Video Options

The -vset- command modifies the conditions for playing a movie, including the rectangle in which the movie is
displayed:

vset rectangle, left,top; right,bottom; keyword; keyword
vset sound, volume $$ "sound, 50" is half-volume
$$ volume = -1 sets to default sound volume for this video

Here is the complete set of optional keywords, similar to the -video- command:

119

VIDEO & SOUND

rectangle (orrect) specify a new display rectangle
(rectangle, x1,y1; x2,y2)

scale movie is scaled to fit specified rectangle, changing aspect if necessary
(this is the default)

no scale no scaling; if rectangle small, only upper-left video portion visible
center no scaling; movie is centered in specified rectangle

sound control sound volume (sound,volume -- where volume is 0 to 100)
(volume = -1 sets to default volume for this video)

play play the entire movie
(default is NOT to play, in which case use a subsequent -vplay-)

loop whenever end of movie is reached, start over from beginning
"loop" or "loop,variable" where variable is TRUE or FALSE
(default is NOT to loop)

controller (orctrl) displays video controller (scroll bar, etc.)
(controller placed under image; default is that there is no controller)
If there isn't enough room for a controller, zreturn = 18.

ctrl rect place controller at specified location rather than under image
(ctrl rect, x1,y1; x2,y2 -- height however is zvcheight)

palette use palette that is included in the movie, if there is one
"palette"” or "palette,variable"; variable is TRUE or FALSE
(default is TRUE, movie does use an included palette)

For example, the followingommandwill shift the playing of the movie to theew rectanglendcenter the
display in the rectangle:

vset rectangle, 10,20; 200,150; center
SeeAlso:
video Initialize Video (p- 117)

Video Status (p. 327)

vplay: Play a Video Sequence
The -vplay- command plays a portion of a movie (a -video- command must have been executed previously):
vplay start,end
where start and end are times measured from the startmiothie. Either of the arguments may be omitted. A
missing start is interpreted as the current time (sanzetame, the system variable that gives thwrenttime
within the movie). A missingend isinterpreted asdon't stop." A time that isnegative is the same as a
missing time. Some examples:
vplay 3 blank tag, play without stopping from where we are

$$ (like hitting the play button on the player)

120

VIDEO COMMANDS

vplay 15 $$ play from 1.5 seconds to the end
vplay 4,-1 $$ play from 4 seconds to the end
vplay ,8.5 $3 play from current time to &Bconds

The -vplay- command setseturn = 20 for "operation not supported” if you try to play a movie anaghine
that doesn't have QuickTime or Video for Windows installed.

Example:
unit xvplay
video movie; "somemovie"; 10,10; 150,100 $$ initialize movie
vplay zvlength/2,zvlength ~ $$ play 2nd half of movie
loop zvtime >= 0.75zvlength
pause 0.1
endloop
write Have just passed 3/4 point in movie...
See Aso:
video Initialize Video (p- 117)

Video Status (p. 327)

vshow: Show a Single Frame
The -vshow- command displays a single still "frame" of a movie and holds it:
vshow tt 3 show still frame tt seconds imovie

This is equivalent to -vplay tt,tt-. A -video- command must have been executed previously.

Example:
unit xvshow
video "somemovie"; 10,10; 150,100 $$ initialize movie
vshow 2 $$ show still frame 2 seconds into movie
*
SeeAlso:
video Initialize Video (p. 117)

Video Status (p. 327)

vstep: Video Stepping

If a videosequence istopped, the -vstegommandplays the next or previouspecified number of“frames”
(more technically, that number of video "samples™”):

vstep nn $$ play nn frames; forward if positive, backward if negative
vstep 1 $$ step forward one frame (for a "slide show")

vstep -1 $%$ step backward one frame

vstep 0 $$ stoplaying

121

VIDEO & SOUND

A -video- commandnust have beerexecutedoreviously. If avideo sequence isurrently playing, -vstep-will
stop the sequence and then play the specified number of frames (no play if nn = 0).

After a -vstep- command the system variatyleturn is set to 14 (out of range) if the display reachesetitk of
the movie (or the start of the movie if stepping backwards).

Example:
unit xvstep
video movie; "somemovie"; 10,10; 150,100 $$ initialize movie
vplay 3 starplaying
pause
vstep 0 $% stop playing
SeeAlso:
video Initialize Video (p- 117)

Video Status (p. 327)

sound: Playing Recorded Sounds
The -sound- command plays recorded sounds such as speech or music:

sound filename 3 plafirst sound in the file

sound filename,N $$ play sound number N in the file
The -sound- command handles regular sound files on a Macintosh; on Windows it handles *.wAlsélethe
-sound- command recognizes and plays the sound track of a QuickTMigeorfor Windowsmovie, in which
caseany video clip currently running isshut down,and the systemvariableszvtime, zvlength, and

zvplaying give information about the playing of tkeund.

The differencebetween -beepand sound- isthat the beep- commanglays tonesspecified by frequency,
duration, and volume, whereas the -sound- command plays arbitrary sounds that have been prerecorded.

To play different sounds stored in the same file on a Macintosh, use ResEdit to examine Brmulfile-click
the sound icon ("snd" resource), and note the ID numbers listed for each sound of interest. Use these ID numbers
in the -sound- command.

SeeAlso:
beep Making an Audible Tone (fl22)

beep: Making an Audible Tone

The -beep- command plays a tone with the computer's built-in tone generator.

beep $3blank tag beep, gives simple beep
beep frequency, duration, volume
beep f1,d1,v1; v2,d2,v2; v3,d3,v3

The simplest format, a blank-tag -beep-, plays the "system default beep.” On a Macintosh, this default beep can
be set by the user from the control panel.

122

VIDEO COMMANDS

In the second format, a single tone is defined by a triplet of values: frequency, dumadiealume. One beep-
command can specify multiple tones, with the tones separated by semicolons.

Frequency is stated in hertz (cycles per second) armuigled tothe nearesimusical note (including sharps and
flats). The higher the frequency, the higher the tdiddle C onthe piano is about 260 hertz. Aardinary"
woman's singing voice might range from about 200 hertz (G below middle C) to 66(2nertz abovemiddle

C.) To move upwards one half-step, multiply 63/122 That is, if A is 440, then A-sharp is 443432

Duration is in seconds. Volume is a number from 0-100, which is mapped omtmtfgeofthe machine(You
can think of this as percent of highest volume.) A volume of 0 is always silent.

Executionproceeds tothe next commandwhile the beep is playing, but if another -beep- command is
encountered, cT waits for the first beep to finish before starting the next one.

Examples:
unit xbeep $$'Twinkle, twinkle, little star"
f:t=0.45 $$ one unit of time
f: volume = 30 $$ 30% of maximum volume
i tune(14) $$ list of notes for the tune
f: length(14) 3 time duration of each note
i index
i c=262,cs=277,d=294,ds =311 $$ note names
i e =330, f=349, fs = 370, g = 392
i gs = 415, a = 440, as = 466, b = 494
set tune:=c,c,0,0,a,4a,9,f,fe e ddc
set length :=¢t, t, t, t, t, t, 26, t, t, t, ¢, £, £, 2t
loop index :=1,14
beep tune(index), length(index), volume
endloop
*
SeeAlso:
sound Playing Recorded Sound§. 122)

123

MOUSE & KEYSET INTERACTIONS
4. Mouse & Keyset Interactions

Overview of Mouse & Keyset Interactions

In cT there are several commarttiat allow userriput: pause-, -getkey-, -arrow-hutton-, edit-, -slider-, and
-touch-.

The pause command is used for mouse and single keypress inputs, and it also permits timed pauses.

The getkey command is used for specialized processing of mouse and single kegpregssin themiddle of
a calculational or graphics loop.

Keyboard inputs (words, phrases, numbers, formulas) can be acceptedibyarr €ommandand evaluated by
a variety of "response-judging" commands. This is discussed under "Word & Number Input."

The button- command creates a labeled region that accepts and processes mouse clicks in that region.
The edit- command establishes a scrolling text panel that responds to keyboard and mouse inputs.

The slider- command creates a slider or scroll bar and lets the user manipulate the slider with the mouse.
The touch- command establishes a region of toeeenand specifiesunits to beexecutedautomaticallywhen
therearemouse clicksand drags irthat region (unlike the -button- command, hotton is displayed in the

region).

For input fromexternal devices, sdbe serial- command; foinput from other programseethe socket
command; and for input from files, see tketfile- command.

SeeAlso:
Mouse, Single Key, & Timed Pause (p. 125)
Word & Number Input (p. 158)

Buttons, Dialog Boxes, Sliders, & Edit Panels (p. 142)
serial Serial Port (p. 309)
socket Connecting to Another Process (p. 311)
setfile Select #&ile (p. 291)

124

MOUSE, SINGLE KEY, & TIMED PAUSE
Mouse, Single Key, & Timed Pause

pause: Single Key & Timed Pause

The -pause- command can be used for timing and/or to collecingserfrom the mouse or theeyboard.This
section only discusses keyboard input. Mouse input is in the next section.

pause 0.5 $Wait for 1/2 second

pause keys=all $Wwait for any keypress

pause $S&ame as keys=all

pause keys=touch $8ait for mouse input

pause 3,keys=n# 3 wait 3 seconds OR for key "n" or "#"

When the tag is a number (-pausé\-) execution ofthe program pauses for "N" secondéter that time has
finished, the progranibreaksthrough" the pause, execution continues with the tiagt and the system
variablezkey is set to zk(timeup). If "N" is O (dioo small to permiaccuratetiming), execution continues
immediately. If "N" is negative, the -pause N- is converted into a blank-tag pause.

When the tag is blank or "keys=all", execution waits for the user to press a key. Execution then continues with
the next line andkey is set to the value of the key pressed: zkey kegkpressed

When the tag contains a key list starting wikeys=", it specifies what types aiputs will benoticed. The
program waits for one of the listed inputs and sets zkey keykfessedl If both a numbeand a keywordist
are given, the program pauses until either the time has elapsed or one of the specified keys is pressed.

The key list may contain any alphanumeric character (a X 5 %) or any of these words: timeup, negraback,
cr, space, tab, ext, touch (and touch variants). Entries in the key list are separated by commas.

Time, keyset, and mouse events can be combined. The following stateithamait for "k", "m", mouseleft
button pressed down or mouse moved, or for three seconds to elapse:

pause 3,keys=k,m,touch(left: down,move)
Examples:

unit xpausel 3using -pause- for timing
i: X

loop x := 50, 300, 25 $$ box moves across screen
box X, 50; x+75,150
pause 0.5 $$ pause one-half second
erase $®rase entire display

endloop

unit Xpause2 $$ising -pause- to accept keyset inputs

at 50,50

write press a number

pause keys=0,1,2,3,4,5,6,7,8,9

at 100,100

show zchar(zkey) $$hows character whose numerical code is "zkey"

at 115,100

show zkey $$shows ASCII key value (numerical code)

*

125

MOUSE & KEYSET INTERACTIONS

SeeAlso:
enable Allowing Mouse Input (p. 132)
The Keyname Function: zk() (p. 204)

pause: Mouse Inputs

Mouse clicks (i.e., where you "touch" the display) are collected with a -pause- command.

pause keys = touch $$ notices left button down
pause keys = touch(left:down,up,move)
pause keys = touch(left:down; right:down)

The simplest form, -pauséeys=touch- recognizesnly "left buttondown" mouse clicks. Other moussicks
are ignored. To recognizether button presses, you must explicitigt them in parentheses after the
"keys=touch". The argument (left: down,up) means "notice when théu#fin goesdown or when theleft
button comes up. Thisnplies "ignore movement while the left button @wn." (The ancestors afT, the
TUTOR and MicroTutor languages, ran eystems thabhadtouch-sensitive displaglevices, sahat when the
user was asked to indicate a point on the screen, the user actuctigdthe screen.)

The six different mouse actiongield these values forkey, which can be used to compaseith the zk
function:

zkey = zk(left: down) 2096 = zk(touch)

zkey = zk(left: up) = 4097
zkey = zk(left: move) = 4098
zkey = zk(right: down) 2099

zkey = zk(right: up) = 4100

zkey = zk(right: move) =4101

On systems with a one-button mouse, the "right" buttoobisined byholding down the shift key on the
keyset while clicking with the mouse button.

The x,y position of the mouse when a click is entered is given by three sets of system variableseacte dbr
the coordinate systems that were in effect at the time of the -pause-:

ztouchx, ztouchy $$ absolute
zgtouchx, zgtouchy $$ graphing
zrtouchx, zrtouchy $$ relative

These variables are all zero unless the most recent user input was a mouse click.

It is also possible to determine the current mouse coordinates, independent of whether teeamimisput was
from the mouse:

zmousex, zmousey $$ current mouse position

Special note: theurrentmouse position given by zmousex/zmousey mayolside the cTwindow due to
dragging, and the reported position is affected by -fine- and -rescale-.

The system variabledeftdown andzrightdown are TRUE if the left or right button isurrently held down,
independent of the current valueziey (which refers to the most recent -pause- or -getkey- event).

126

MOUSE, SINGLE KEY, & TIMED PAUSE

If the time betweentwo down events is less than the time given by systamablezdblclick, andthe two
clicks are near each other on the screen (withinpixels, say), you may want twonsiderthe secondclick to
be a "doubleclick.” Some computer systems allow the usespecify thedouble-clicktime, in which case
zdblclick is set to theuser-specifiedime. Youcan identify double-cliclevents by keeping track dlie time
between down events (usiaglock).

NOTE: Mouse clicks that cause a menu to app@arreserved bthe operating systerand cannot bedetected
by a cT program. You can create or remove a menu item, but you cannot detect or chaogethesition of
the menu display.

Time, keyset, and mouse events can be combined. The following stateithemait for "k", "m", mouseleft
button pressed down or mouse moved, or for 3 seconds to elapse:

pause 3,keys=k,m,touch(left: down,move)
Examples:

In examples "xmouseclick" and "xmouseclick2" -pause- accepts niopsts andusesztouchx andztouchy
to position a -write- statement:

unit xmouseclick $$ mouse inputs
at 10,10
write Click the left mouse button at various positions.
Select "Quit running" from the menu to exit.
loop
pause keys=touch
at ztouchx, ztouchy
write HI!
endloop
unit xmouseclick2 $$ left & right buttons
at 10,10
write Click the left button for HI!
Click the right button for BYE!
(Hold down the shift key if your
mouse has only one button.)
loop
pause keys=touch(left:down; right:down)
at ztouchx, ztouchy
if zkey = zk(left:down)
write HI!
else
write BYE!
outloop 3 quit
endif
endloop

The example "xmousearea" looks for a touch inside an area (see the aotidhitton- commands for aelated
capability):

unit Xmousearea $dlick in an area
box 75,35; 225,70 $$ "white" box
fill 75,105; 225,140 $$ black box

127

MOUSE & KEYSET INTERACTIONS

pause keys = touch
at 75,175 $$ position for -write-s
if 75< ztouchx< 225 & 35 <ztouchy <70
write You clicked the white box.
elseif 75< ztouchx< 225 & 105 <ztouchy <140
write You clicked the black box.
else
write You did not click in a box.
endif

*

The example'xmousedraw"draws acontinuous line by initiating a linevhen the left button goedown,
noticing mouse movement when the left button is held down, and exiting when the left button is released:

unit xmousedraw $$ draw a "continuous" line
at 10,10
write Tostart a line, press down the left button.

To draw a continuous line, move the mouse
while holding down the button.
To stop, release the mouse button.

pause keys=touch(left: down)

at ztouchx, ztouchy

loop
pause keys=touch(left: move, up)
draw ;ztouchx, ztouchy

outloop zkey = zk(left: up)
endloop

*

Example "xmousedraw2" also draws a continuous line but uses -inhibit startdraw- :

unit xmousedraw2 $$ draw a "continuous" line
at 10,10
write Tostart a line, press down the left button.

To draw a continuous line, move the mouse
while holding down the button.
To stop, release the mouse button.

inhibit startdraw

loop
pause keys=touch(left: move, up)
draw ;ztouchx, ztouchy

outloop zkey = zk(left: up)
endloop

Example "xrubberband" lets you adjust a vector by "rubber-banding":

unit xrubberband
f: x1, y1, x2, y2
at 10,20
write Click and drag the mouse
to "rubber-band" a vector:
pause keys=touch
calc x1 := x2 :=ztouchx

128

MOUSE, SINGLE KEY, & TIMED PAUSE

y1l :=y2 = ztouchy

mode xor

loop
vector x1,y1; x2,y2 $$ draw
pause keys=touch(left: move,up)
outloop zkey = zk(left: up)
vector x1,y1; x2,y2 $$ erase
calc X2 :=ztouchx

y2 := ztouchy
endloop

Example "xmousedrag" lets you drag a box around on the screen (also see "get and put Portions of Screen"):

unit xmousedrag
f: x, y, W=30, H=20
at 10,20
write Click and drag the mouse
to drag a box around:
pause keys=touch
calc X :=ztouchx
y := ztouchy
mode xor
loop
box X,¥; x+tW,y+H $$ draw
pause keys=touch(left: move,up)
outloop zkey = zk(left: up)
box X,y; x+W,y+H $$ erase
calc X :=ztouchx
y := ztouchy
endloop
SeeAlso:
button Buttons to Click (p- 142)
touch Touch Regions (p. 129)
Mouse Status (p. 325)
The Keyname Function: zk() (p. 204)
zkey Last User Input (p. 333)
inhibit/allow startdraw (p. 66)
get and put Portions of Screen (p- 89)

touch: Touch Regions

With the -touch-commandyou can establish a "touctrectangle" forwhich associatedmouse events are
automatically processed:

define touch: mytouch $$ define a "touch" variable
touch mytouch; 10,20;100,120; left:down;xDown;
left:move,up;xMore(15); $$ can continue onto following lines

left: double; xDouble $$ process double-clicks
upmove;xWhileUp $$ process moves with no button down

129

MOUSE & KEYSET INTERACTIONS

This -touch-commandestablishes that ithere is a left-button-down event insitiee rectangle (specified by
10,20;100,120), unit "xDown" will be executeahd if the mouse isnoved orthe left button isreleasedunit
"xMore(15)" will be executed.Note that a unitcan have asingle numeric(integer or float) pass-by-value
argument, as in "xMore(15)".

The "upmove" optiondo-esthe associateduinit wheneverthe mouse is movedventhough no button is
depressed.

After establishing a touch rectangle, you don't need (and can't use) explicit -pause- comrmateisdaprocess
mouse events associated with that rectanglepaise- command iaffectedonly by mouse eventsutside any
touch rectangle(s), buttons, sliders, or edit panels.

For any of the -touchunits to bedone,the first down event must be within theectangle, even ifou don't
specify a unit fordown events.Oncethe mouse button hdsenpressediown, the following move events (if
any) andthe final up eventausethe moveand upunits to bedone, everthough the mouse may beoved
outside the touch rectangle. Which -touch- command "owns" the mouse events is determined by tdewnitial
event, not by later moves.

While a specified touch unit is processing an event, other mouse evertgkedout and donot get pocessed
until the specified unit is completed (or there is a -jump-).

The following statement destroys the associated touch region, so that the mousarevesitsnger processed
automatically:

touch mytouch 3 destroy the touch region

The following statement first destroys the touch region origirgdociatedvith the touchvariable "mytouch”
and then creates a new touch region:

touch mytouch; 200,200; 220,220; left:down;Other $$ change the touch region

The touch event optionmclude those availablevith the pause- command (left:dowreft:up, left:move,
right:down, right:up, right:move). You can even specify both left-button and right-button options wstntee
unit:

touch mytouch; 10,20;100,120; left:down,up;right:down,move;Action

You can also specify double-click events as "left:double" or "right:doublefouble-click isdefined as a rapid
sequence oflown-up-downandthe associatedinit is executedvhen the usereleaseshe mouse buttorfthe

second upevent in thesequence)Note that in arapid sequence aflown-up-down-upthe first down and up

eventsare processed ithe normal way. It is only when theecond dowrevent occurghat cT recognizes a
double-click event, in whiclease it doesot do the"down" unit but waitsfor the final up evenand does the
"double" unit.

For cT to identify a double-click event, the time between the two down events has to be less than the time given
by system variabledblclick, and the two clicks have to be near each other orsdtemn(within two pixels).

Some computer systems allow the user to specify the double-click time, in gdsehdblclick is set to the
user-specifiedime. If you don'tspecify "double" on a -touch- commanahu can identify double-click events
yourself by keeping track of the time between down events (asiogk).

The system variabledeftdown andzrightdown are TRUE if the left or right button isurrently held down,
independent of what event triggered the execution of the touch unit. For example, if the utniggessd by a
down event, there might be a situatimhereyou do thingsdifferently in this unit, depending orwhether the
mouse button has already been released.

130

MOUSE, SINGLE KEY, & TIMED PAUSE

There is a "priority" option to distinguish among overlapping rectangles, and this option must be the last thing
specified in the statement:

touch mytouch; 10,20;100,120; left:up;right:up;Process(44); priority,100

If priorities on intersecting touch regioaseset, a mouse event in awerlap region "belongs" to thegion
with the highest priority. If priorities are not set, it is undefined as to which touch command is active.

The cT sample prograrBigForty.t a solitairecard game, is an example of a program that udesch-
commands extensively and has no explicit -pause- commands at all.

Example:

unit xtouch
touch: bigbox, smallbox

box 10,20;100,120 $$ big box

box 160,50;220,80 3 small box

touch bigbox; 10,20;100,120; left:down;xDown;
left:move;xMove; left:up;xUp
left:double;xDouble

touch smallbox; 160,50;220,80; left:down;xSmall

at 15,150 $$ position for writing

pause $%lon't stop executing even if not in "Run" mode

unit xDown $$ handle down events

write (

do xScreenCheck

unit xMove 3 handle move events

write -

do xScreenCheck

unit xUp $$handle up events

write)

do xScreenCheck

unit xDouble 3 handle double-clicks

write D

do xScreenCheck

unit xSmall $$down in small box

write s

do xScreenCheck

unit xScreenCheck 3 check for screen wrap

if zwherex > zxmax-20
at 15,zwherey+20

endif

SeeAlso:
button Buttons to Click (p. 142)
pause Mouse Inputs (p. 126)

131

MOUSE & KEYSET INTERACTIONS

enable: Allowing Mouse Input

The enable- command is a rather specialized commntiaaigprepares an -arrow- command otblank pause-
command to receivénputs from "external devices.” These commande not neededfor normal mouse
interactions. An externalevice isanything other than the keyset; usually it is the mouse. disable-
command turns off reception of external inputs.

enable touch $$ refers to left:down
disable touch
enable touch(left:move; right:down,move)

The enable touch-and disable touch- commandsffect only left-button-downmouse clicks. Enablingther
mouse actions requires explicit arguments for the touch keyword:

enable touch(left:up; right:up)

enable touch(left:down; right:up,down,move)
disable touch(left: up,down,move)

disable touch(left:move; right:move)

An -enable touch-followed by ablank pause- isthe equivalent to -pause keys = touch,all-. Either &eft
mouse click or a keypress will break the pause.

When -enable touch- is ineffect at an -arrow4nouse inputinside the bounding bogefined bythe -arrow-
command is used to edhe responseOutsidethat area, amouse click initiates judging. In that cagéey =
zk(touch) instead of zkey=zk(next), asrisrmally thecasewhen judging is initiated by pressing ENTER or
selecting (Enter Response) from the menu.

An -enable touch- also allows a mouse click to move the user to the urektWhen -enabl@¢ouch- is in
effect, pressing the left mouse button at the end of a main ueguisalent toselecting (Next Page) from the
menu.

Example:

Any mouse click outside the arrow area (shown by a box) initiates response jaddmgtches the -no zkey
= zk(touch)-. If the click falls inside thieint box, the hint is given (a mordegant way to ddhis is with a
-button- command). Thgudge exit- thencauseshe mouse click to be ignored, #fuat the usecan continue
entering her response.

unit xenable
at 50,50
write Who was the Great Emancipator?
enable touch $$ allow touch input at arrow
do clicknere $glisplay "hint box"
box 50,100; 240,120; 2 3 show arrow region
arrow 50,102; 240,120
answer [Abraham Abe] Lincoln
no zkey = zk(touch) $$ click outside arrow region
if 100<ztouchx<225 & 150<ztouchy<220
do showhint
endif
judge exit $$ wait for more input
no
endarrow

132

MOUSE, SINGLE KEY, & TIMED PAUSE

unit clickhere
box 100,150; 225,220
text 100,175;225,220
Click here for a hint.
\
unit showhint
erase 101,160;224,210
text 100,160;225,210
He spent much of his childhood in Kentucky.
\
SeeAlso:
button Buttons to Click (p. 142)
judge Changing the Judgment (p. 182)

press: Force a Keypress

The -presscommandsimulateskeypresses by the usénput generated bypress- appears tthe program as
though it were input entered by the user.

press zk(a) 3 press an"a"
press zk(erase)
press zKk(right:up),123,456

Note that press-ed inpugse processed byause-, -arrow-and getkey-but are not passed tgraphics objects
(edit panels, buttons, and sliders). It is often possible to simulate input togttagdecs objects by -dog the
units associated with these objects or by using the "reset" option to control the object.

The tag of apress- command ithe numeric value of an input the useight make, such as typing "a" or
clicking the mouse. This value expressed ask(keynamg or as a humbeiWhen -press-ing anouseinput,
the mouse position must be given.

Examples:

This is a rather contrived example. It would be more typical to use -jump xpressla- in this situation.

unit xpressl 3 Use Run from Selected Unit!
next Xpressla
at 50,50
write Click the mouse
in the box to continue:
box 60,150; 190,225
loop
pause keys=touch $8ait for a left click

$$ if click is in box, exit from loop
outloop (60 < ztouchx < 190) & (150 < ztouchy < 225)

endloop

press zk(next)
*

unit xpressla

133

MOUSE & KEYSET INTERACTIONS

at 50,100
write Great! You got to the next unit.

*

In this example, the -press- command supplies a "mouse press" that breaks through the -pause-. Note that when
a "touch" is pressed, the position of the touch must be indicated.

unit Xpress2

press zKk(right:up),123,456 3 touch & position
pause keys=touch(right:up)

at 50,50

write zkey = <|s,zkey|> 3 type of input

ztouchx = <|s,ztouchx|> $$ mouse position x
ztouchy = <|s,ztouchy|> $$ mouse position y

The third example simulates the action ataarow by filling the arrow buffer garrowm) andthen pressing a
key (zk(next)) to initiatejudging.

unit xXpress3
at 50,50
write What animal says "meow"?
arrow 100,100
calc zarrowm := "cat"
press zk(next)
answer cat
write meow!
endarrow
*
SeeAlso:
The Keyname Function: zk() (p. 204)

getkey: Check for Input

The getkey- commandollects a single key from the user-ingutffer and paces itinto the systenvariable
zkey. This is a very specialized command; it is not often used.

getkey $&lways has a blank tag

Normal processing of user inputs occurs only when the program is in a "waiting" stateaaban, a -pause-,
or theend of amain unit. All keysare stored irthe "user-inpubuffer" until the program isready toprocess
them. The getkey- command is used to retrigkeypresses when there is rarew- or pause-, such as in a
tight calculational loop oduring ananimation.The getkey- command removéise first key from theinput
buffer and places its value zkey. If there are no keys waiting in the input buffekey is set to -1.

Example:
unit xgetkey $$escape from a tight loop
f:N
calc N:=1 $dinitialize counter
at 50,50
write Press "s" to stop the counter.

134

MOUSE, SINGLE KEY, & TIMED PAUSE

loop
calc N :=N+1 $$ increment counter
erase 100,100; 150,150
at 100,100
show N 3 display counter
. getkey $get key from input buffer
outloop zkey=zk(s) $%exit if key is "s"
endloop
at 50,150
write after the endloop

*

clrkey: Clear the Input Buffer

All inputs, whether from the keyboard, from the mouse, or from -press- commands, are stored in the "user-input
buffer" until the program isready touse themWhen keysare pressedapidly, severakeys may bepressed
beforethe first key isprocessedSometimes it is noappropriate taallow severalkeys to accumulate in the

buffer. The -clrkey- command clears the user-input buffer. That is, it throws away all pending key presses.

clrkey $$always has a blank tag
Example:
Normally it is possible to "stack up" many keys while waiting for the loop to finish. diHey- enforces the

instructions; only keys$yped afterthe loop isfinishedare seen by thearrow-. Try this example with and
without the -clrkey- command.

unit xclrkey
f: x
icons zicons
at 22,21
write Type "hello" when the ball
reaches the edge of the screen.
inhibit startdraw $Prevent extra icon
loop X := 50,zxmax
move icons: ;X,60; zk(D)
endloop
clrkey $$empty user-input buffer
arrow 73,96
answer hello
endarrow
*
SeeAlso:

inhibit/allow startdraw (p. 66)

135

MOUSE & KEYSET INTERACTIONS
Pull-down Menus

Summary of Menu Formats

The -menu- command creates a pull-dawenu item. The tag ofmenu- is intwo major parts. The firgpart

describes what will appear on the pull-down menu and may specify ordering. It is termiithtedcolon. The

second part names the unit that corresponds to this menu item. The unit name may send one numeric (integer or
float) pass-by-value parameter.

menu itemtitle:unitname

menu cardname; itemtitle: unitname

menu Special; Choice <[s,nn|>: xterm1 $$ example with embedded -show-
menu itemtitle: unithame(parameter)

menu card; title: unithame(parameter)

menu itemtitle,M: unitname $$ M is positiomfo

menu cardname, N; itemtitle: unithame

menu card,N; title,M: unitname(parameter)

Iltems may beleletedindividually, an entire menweard may bedeleted, orall program-createdtems can be
deleted at once.

menu cardname;Anltem $$ delete item
menu cardname $$ delete card
menu $$ cancel all -menitems

The unit name can be in a marker variable:

unit mtest
marker: subl
calc subl :="Trylt"
menu Hello: (subl) $$ equivalent to -menu HeTylt-

Note that a -button- command essentially provides an "on-screen" version of a menu option.

SeeAlso:
Simple Menu Commands (p. 136)
Ordering Menu Items and Cards (p. 138)
Passing Menu Parameters (p. 139)
Menu Like -do- (p. 140)
button Buttons to Click (p. 142)

Simple Menu Commands

The -menu-command creates "gull-down" menuitem. Whenthe user selects the meitam, the associated
unit is executed as if it were executed as a subroutine with a -do- comBragelanitem hasbeenadded to the
menu, it is always available until it is explicitly deleted.

136

PULL-DOWN MENUS

When testing -menu- commands, you must use "Run 8etactedUnit" or "Run from Beginning", unless a
-pause- command blocks completion of execution.

menu itemtitle: unitname
menu cardname; itemtitle: unitname
menu Special; Choice <|s,nn|>: xterm1 $$ can use embedded -show-

The "itemtitle" is the word or phrase thappears orthe menu. The simplest form afhenu-puts an item on
the first menucard.For example, to makavailable a routine for resetting the scales on a graph,might
have:

menu Reset Graph Scales: setscales

If a "cardname'appears, it causéhe menu item t@ppear on anenucardwhose title is thécardname." A
semicolon separates "cardnanfies¥m "itemtitle." For example, if yoinadseveraloptionsfor manipulating a
graph, it would be nice to have them collected weparatanenucard. The following commandsreate a new
card labeled "Graph Options" that has two items, "Reset Scales" and "Show Grid":

menu Graph Options;Reset Scales: scales
menu Graph Options;Show Grid: grid

A menu item isdeleted bygiving only its description as the tag of the commamdth no colonand no
unitname.

menu itemtitle $$delete item from the standard Options menu
menu Options; itemtitle 3 delete item from Options menu
menu cardname; itemtitle 3 delete item from another menu

To delete an entire menu card and all of its items, use onlgatideame irthe tag, with no itemtitle, colon or
unitname:

menu cadname $%leletecard
To delete all of the program-created menu items, use a -menu- command with a blank tag.

menu $$ delete all menus
Some menu items are supplied automatically by the system. These menu items are not controlladdnuthe -
command and are not deleted by a blank -menu- command. For ex@Bapld, appears orthe first menucard

whenever a -back- command is active.

The unit name can be in a marker variable:

unit mtest
marker: subl
calc subl ;= "Trylt"
menu Hello: (subl) $$ equivalent to -menu Hellylt-

Note that a -button- command essentially provides an "on-screen” version of a menu option.

137

MOUSE & KEYSET INTERACTIONS

Example

This examplecreates axew menucardnamed”Displays” and puts two items on it. Since ncard name is
specified,the item"Clear Screen'joes on the firstard. If "Draw aTriangle" is selected,unit triangle- is
executed.

Notice that after the -writestatement, execution hasachedhe end ofthe unitand iswaiting for the user to
take an actionAfter a triangle orsquare isdrawn,the programreturnsto the point justafter the write-
statement and again waits for the user to take acfibus, in this example, thaser could seledhe triangle
and then the square.

Example:
unit Xxmenu $$ "Run from Selected Unit"
next Xxmenu
menu Displays; Draw a Triangle: triangle
menu Displays; Draw a Square: square
menu Clear Screen: clear
at 50,50
write You can use the menu
to select a drawing.
*
unit triangle
draw 25,150; 100,100; 150,200; 25,150
*
unit square
box 175,100; 250,175
*
unit clear
erase
SeeAlso:

Ordering Menu Items and Cards (p- 138)
Passing Menu Parameters (p. 139)

Menu Like -do- (p. 140)

do Calling a Subroutine (p. 224)
next Moving Ahead (p. 237)
button Buttons to Click (p. 142)

Ordering Menu Items and Cards
The first part of the -menicommand (befor¢he colon) mayhave four piecesOnly the "title" is required.
Usually itemsappear orthe menu in therder in which theyare createdtems orcardscan beforced into a
particular order by following the name with a comma, then a precedence value (a number).

menu card,N; title,M: unitname
In the line above,

card is the label on a user-created menu card

N is the menu card's relative position

title is the phrase that appears on ithenu
M istitle's relative position on theard

138

PULL-DOWN MENUS

Items (or cards) with small precedence values appear hfore (or cards)with largevalues. The valuemust

be between 0 and 100; they need not be consecutive. If two items (or cards) are given threceglerceoalue,

the one that is mentioned first will appear first. To place an item at the bottom of a card, the command might be
menu Reset Graph Scales,100: setscales

When deleting items or cardnames, it is not necessary to include the precedence values. A menu item given by
menu MenuCard, 70; Lastltem,100: someunit

could be deleted with

menu MenuCard, Lastltem $$ delete item
menu MenuCard $$ deleteard

In order to control the placement of program-created menu items with respect to system-creafezhmeryou
need to know the precedence values assigned by the system:

20 Paste
25 Cut

30 Copy
35 Replace

40 Enter Response -- at an -arrow-

96 (Next Page) -- end of unit; -next- active
97 (Proceed) -- at a -pause-

98 (Back) -- command -back- active

99 QuitRunning

For the Macintosh ONLYAn item title that begins with a dash always puts a lindashes orthe menu. No
other menu-creation metacharacters do anything.

menu -dashedline; dummyunit

SeeAlso:
Simple Menu Commands (p. 136)
Passing Menu Parameters (p. 139)
Menu Like -do- (p. 140)

Passing Menu Parameters

An optional parameter may be given in parentheses after the unithame. This paraenakatedand storedat
the time the -menu- command is execui®ten the item is chosen from the methis saved parameter value
is passed by value to the unit. Only one parameter is allowed, and it must be integer or floahdriar ar a
file).

menu Draw a Circle: figures(1)
menu Draw a Square: figures(2)
unit figures(N)

i: N

139

MOUSE & KEYSET INTERACTIONS

Because the parameter is evaluated at the time the -menu- item is added to the meamnottiave adynamic
parametethat passedifferentvalues to theexecutedunit depending oruser actions. If you want parameter
that changes with user actions, you must use a global variable and keep updating its value.

Example:

This example isanother version of the example giveith "Simple Menu Commands."Instead ofusing a
separate unit for each menu selection, a parameter is used to select the action from one general-purpose unit.

unit Xxmenupp $$ use "Run from Selected Unit"
next xmenupp

menu Displays; Draw a Triangle: drawit(1)

menu Displays; Draw a Square: drawit(2)

menu Clear Screen: drawit(3)

at 50,50

write You can use the menu

to select a drawing.

*

unit drawit(choice) $Inake drawings
f: choice
case choice
1 $$ triangle
. draw 25,150; 100,100; 150,200; 25,150
2 $$ square
. box 175,100; 250,175
3 $3 clear screen
. erase
endcase
SeeAlso:
Simple Menu Commands (p. 136)
Menu Like -do- (p. 140)

Menu Like -do-

When a menu item is selected, the associated umeitésuted as itvould bewith a -do- command.Contol of
the flow of execution is nothanged. Ithe program was awaiting a user response, #tilk waiting after the
menu unit has been executed. If the program was waiting at a -pause-, it returns to wait at the -pause-.

Sometimes menu itenere used teelect an entirelgifferent part of the program. In that case, a -jump- is
needed instead of a -do-. This must be faked by executing an intermediary unit that executes a -jump-.

menu Section 1: jsectionl
menu Section 2: jsection2
unit jsectionl

jump sectionl

*

unit jsection2

jump section2

140

PULL-DOWN MENUS

When the user selects "Section 1", the unit "jsection®Bxexutedvith a do-. Howeverthe -jump-command
causes control to move to unit "section1" and cancels all previous connections.

The same effect can be achieved more compactly by using -menu- commands with parameters:

menu Section 1: jumper(1)
menu Section 2: jumper(2)
menu Section 3: jumper(3)
unit jumper(n)
i:n
jump \n-2\sectionl\section2\section3
SeeAlso:

Simple Menu Commands (p. 136)
Conditional Commands (p. 18)

Using Variables with - menu-

Any of the arguments in the tag of -menu- can be variabtbsding the unitname (as a marker variable). The
card nameand item title are given asembeddedmarker expressions; the positiomdicators are numeric
variables. Note, however, that if you useaiable forthe parameter passed tbe menu unit, only itgurrent
value is stored: later changes to that variablaataffect the parameter value received by the menu unit.

define marker: card, item, unithame

i: pg $3 relative page position

i: pos $$ relative position on card
calc card := "Graphing"

item := "Reset X-Scale"
unitname := "opts"

pg =3
pos =25
menu <|s,card|>,pg;<|s,item|>,pos: (unithame)(4)
The -menu- above is equivalent to

menu Graphing,3;Reset X-Scale,25: opts(4)

The variables for card name and item titlest beembeddedecausehe -menu-command is expectinggxt in
those positions. Variables can be combined to form the item title or card name:

menu <|s,item|> to <|s,pos|>: scale25
menu <|s,card|> page <|s,pg|>; Bigger: big

These commands make an item "Reset X-Scale to 3" on the top amehanitem "Bigger" on acardlabeled
"Graphing page 3".

SeeAlso:

Embedding Variables in Text (p. 50)
Using Embedded Marker Variables (p. 251)

141

MOUSE & KEYSET INTERACTIONS
Buttons, Dialog Boxes, Sliders, & Edit Panels

button: Buttons to Click
The -button-command creates lutton object that the user can clickad this do-es a specifiedinit. The
-button- command is rather like an "on-screen” -menu- command. The -touch- comnsanteigshat similar to

a -button- command but does not display anything itself.

Before a button- commandmay be used, aorrespondingbutton variable must bedefined. This variable
identifies the button in subsequent commands:

define button: mybutton

Like file variables, buttorvariables can bgassed byaddress tosubroutines. Two buttowariables can be
compared with "=" or "~=".

The basic form of the -button- command is

button variable; rectangle; unit; text; keyword; keyword; ...

button mybutton; 65,90; 130,115; Proceed; "Go On"; radio
The "rectangle" defines the areatbé screencontaining the button; "unit$pecifies theunit to bedo-ne when
the button is hit (this unit malave asingle integer or floapass-by-value argumentst like the unit in a
-menu- command)and"text" is a string to balisplayed in orwith the button.There arealso -rbutton- and
-gbutton- commands that use relative or graphing coordinates.
If no unit is associated with the button, the unit name must be given as x:

button mybutton; 10,20; 150,60; x; "Click Here"
Normally the text in a button idisplayed in a standasiy/stem font,andstyles such as subscript or italic are
ignored,but with -inhibit buttonfont- in effect,the button text idisplayed inthe currentfont set by a

-font- or -fontp- command, and the text can contain styles. It can even contain pasted-in images.

Keyword options
The keywords that specify a button's basic properties are

check acheck box

radio a"radio" button

d three-dimensional appearance

value "value, TRUE" initializes zvalue() to TRUE

erase indicates that the button should be erased when destroyed

If no button style isspecified,the button will look like astandardbutton on thatparticular computefand
therefore may look different on different computers).

For example, the following puts up a button that has "Press Me" nextckeeck box, and specifiesunit
"Action" as the unit to be do-ne when the button is pressed.

define button: me

button me; 30,40; 120,70; Action; "Press Me"; check

142

BUTTONS, DIALOG BOXES, SLIDERS, & EDIT PANELS

Any of the keywords can baccompanied by aexpression that is TRUE &ALSE, to enable or disabléhat
feature. For example, in the following -button- command the erase option will be activated if the venadde
"EraseVar" is TRUE:

button me; 30,40; 120,70; Action; "Press Me"; erase, EraseVar

zbutton and zvalue

When abutton isclicked on bythe user, the systemaariable zbutton is set to beequivalent to the
correspondingbutton variable; zbutton doesndhangeuntil anotherbutton is clicked on, or the button is
destroyed.

Each button has a valuassociatedwith it that is returned bythe 'zvalue()" function: for example,
zvalue(mybutton) or zvalue(zbutton). Bfaultthis value is FALSBvhen the button isreated, andoggles
betweenFALSE and TRUE eachtime the button is hit. Thevalue can be initialized toTRUE with
"value, TRUE".

You can change the button value with a "reset" version of the -button- command, as in the following example:
button reset, me; value, FALSE

Destroying abutton
A button may be destroyed by a -button- command with no keywords:

button me

Buttons are also destroyed ump-, anew mainunit, or when a local buttovariable becomes invalid upon
leaving a subroutine. If the button was created with the "erase" keyword, the button is automaticallyremased
it is destroyedand that area of the screen is cleared to the window color that was in eftbet tine the button
was createdlf the "erase" keyword is not used, a button is not erased when it is destroyeds(bps dccepting
mouse clicks).

Locking out additional events

When a specifiedbutton- unit begins executing, cdoesnot process any othetutton-, slider-, and -edit-

events until theend ofthat unit isreached, ountil there is a -pause-, -getkey-, -arrow-, jump- command.

This blocking of other graphics objects prevents possible confusion fratoadevent interrupting theinit

and do-ing the same unit, although such duplication can occur if you have a -pause-, -getkey-, -arrow-, or -jump-
command in the do-ne unit. You may need to set and check a ghietble toguardagainst duplicationNote

also that -menu- events can take place during the processing of -button-, -slider-, and -edit- events.

If unable to create abutton

If not all of a buttonwould bevisible due topart of the button beingff-screen orclipped, thebutton isnot
created, andreturn is set to 2.0nce abutton hasheen successfullgreated, it is unaffected bkater -clip-
commands: clicking a button temporarily removes the clip in order to highlight the button.

If a button object can be created successfully, the system vaziatlen is set to TRUE (-1). If it cannot be
created due to lack of computer memamgturn is set to 1. An attempt to reset the value of an inactive button
setszreturn to 3.

Fake mouse clicks generated by a -press- command are ignored by buttons.

143

MOUSE & KEYSET INTERACTIONS

Examples:
unit xbutton
button: CircleButton, BoxButton
button CircleButton; 30,40; 120,70; xDrawCircle(15); "Circle"
button BoxButton; 65,90; 130,115; xDrawBox; "Box"; radio
pause
*
unit xDrawCircle(r)
iir
mode Xor
at 150,55
circle r
*
unit xDrawBox
mode Xor
box 60,85; 135,120

*

The next example shows how to wait at a -pause- for a button to be cliakeithan having a unit be do-ne.
You could also get out of the loop with -outloggvalue(waitb)-, sincevalue(waitb) isinitially FALSE when
the button is created and becomes TRUE when the user clicks on the button.

unit xbutton2
button: waitb
at 10,10
write Waiting.....
button waitb;40,45 ;90,60; x; "Next"
loop
pause .1 $%vait a short time
outloop zbutton = waitb
endloop
at 10,85
write After the click.....
SeeAlso:
dialog Dialog Box (p. 144)
touch Touch Regions (p- 129)
Scrolling Text Panels (p. 149)
slider Slider or Scrollbar (p. 146)
Summary of Menu Formats (p. 136)
inhibit/allow buttonfont (p. 69)
clip Limiting the Display Area (p. 63)

dialog: Dialog Box

The -dialog- command brings up a "dialog box" for the user to interact Withre arghreeforms, specified by
the initial key phrases "ok", "yes no cancel", or "input":

dialog ok, "Search completed." $$ displays text and an "Ok" button
dialog yes no cancel, "Continue?" $$ Yes/No/Cancel buttons
dialog input, "Add last name:", "Elvis ", marker $$ get input

144

BUTTONS, DIALOG BOXES, SLIDERS, & EDIT PANELS

dialog page setup 3 choose portrait/landscape printing
dialog print $$ choose pages to print, etc.

The "ok" form brings up a simple dialog box with the specified text (wbahbe a marker expressiarnd an
"Ok" button. The system variabietinf is set to 1 if the dialog executes successfully.

The "yes no cancel" form brings up a dialog box with ghecifiedtext andthreebuttonsfor "Yes", "No", and
"Cancel". The system variabkeetinf is set to 1 for yes, 2 for no, and 3 for cancel.

The "input" form brings up a dialog box with the specified text, an edit panel into which theansenteitext,
and "Ok" and "Cancel" buttons. The third argument of the tag is initial tesppgear inthe edit panel. If you
want theedit panel to bélank, justspecify zempty as the third argument. Tlast argument is anarker
variable that will be set to the user input (including the initial text, if any). The sysdablezretinf is set
to 1 for ok, 2 for cancel.

The print-oriented dialog boxes behave in a similar way. If during this session there leemat -dialogpage
setup- statement execute, -dialog print- automatically brings up the page setup dialog box before bringing up the
regular print dialog box. For more information, see the section on printing.

For all -dialog- commandgreturn is set as for -file- commands. The possible failures are not emoagtory
(zreturn = 18), window not big enough Zreturn = 19), and window not being theforward-most window
(zreturn = 21). Concerning the latter situation, the systamablezforeground is TRUE if theexecution
window is fully visible, in front of all other windows.

Styles in a marker expression in a dialog command are ignored (just as in a -button- command).

Example:
unit xdialog
marker: name
dialog ok, "Click ok to continue" $$ "ok" is only option
if ~zreturn
at 10,10
write Need larger window.
outunit
endif
at 10,10
write You clicked ok.
dialog yes no cancel, "Are you ready?"
at 10,30
write \zretinf-2\yes\no\cancel
* zempty in the following means that the initial text is empty:
dialog input, "Type your name:", zempty, name
at 10,50
write \zretinf-2\ok\cancel
at 10,70
show name
SeeAlso:
button Buttons to Click (p. 142)

Printing (p. 14)

145

MOUSE & KEYSET INTERACTIONS

slider: Slider or Scrollbar

The -slider- command creates a slider or scrollbar objecthbatisercan adjust,andthis do-es a specifiednit,
which canuse the valueorresponding tdhe newslider position. Before a slider- commandmay be used, a
corresponding slider variable must be defined. This variable identifies the slider in subsequent commands:

define slider: myslider

As with file variablesgslider variables can bpassed byaddress tosubroutines. Twaslider variables can be
compared with "=" or "~=".

The form of the -slider- command is
slider var; rectangle; unit; keyword, arg(s); keyword, arg(s); ...
slider myslider; 65,90; 130,115; Movelt
The "rectangle” defines the area of the screen containing the slider, and the unit specifies a unit towteero-ne
the slider is adjusted (this unit may have a single integer or float pass-by-value argustead, with theunit
in a -menu- command). There are also -rslider- and -gslider- commands that use relative or graphing coordinates.
If no unit is associated with the slider, the unit name must be given as x:

slider myslider; 10,20; 150,60; x; horizontal

Keyword options
The keywords that specify a slider's basic properties are currently:

horizontal horizontal rather than vertical slider

value specify initial value: e.g., value,15
range specify range: e.g., range,10,20

(default range is 0 to 100)
page specify the change in value corresponding to "page” scrolling; e.g., page,25
line specify the change in value corresponding to "line" scrolling; e.g., line,2
erase indicates that the slider should be erased when destroyed

The keywords page and line refer to the change in value reported blyd#rewhenthe user clicks in the scroll
bar to move one "page"” (clicking above or below the sliding box) or one "line" (clicking enthefthe scroll
bar).

The keyword "erase” can be accompanied byxgression that is TRUE &fALSE, to enable or disabléat
feature. For example, in the following -slider- command the erase option walktivated ifthe variable named
"EraseVar" is TRUE:

slider myslider; 10,20; 150,60; x; erase, EraseVar
zslider and zvalue
When a slider is adjusted by the user, sstemvariablezslider is set to besquivalent tothe corresponding

slider variable; zslider doesn't change until another slider is adjusted, or the slider is destroyed.

Every time the user adjusts thaider (by draggingwith the mouse), thassociatedunit is do-ne,and the
zvalue() function providesthe current slidervalue. For examplezvalue(myslider) or zvalue(zslider) is the

146

BUTTONS, DIALOG BOXES, SLIDERS, & EDIT PANELS

current numerical value of the position of the specified slider. Slider values run from bottom to tepriddah
slider, and left to right for a horizontal slider.

You can changeany property of an existinglider with a "reset" version of theslider- command, as in the
following example:

slider reset, myslider; value, x+10y

Destroying aslider
A slider may be destroyed by a -slider- command with no keywords:

slider me

Slidersare also destroyed by jump-, anew mainunit, or when a localslider variable becomes invaligpon

leaving a subroutine. If the slider was created with the "erase" keyword, the slider is automatically erased when it
is destroyedand that area of the screen is cleared to the window color that was in effect at the time the slider was
created.If the "erase" keyword isiot used, a slider imot erasedvhen it is destroyed(but it stopsaccepting

mouse inputs).

Locking out additional events

When a specified -slider- unit begins executing, cT does not process any other -button-,astidedit- events
until the end ofthat unit isreached, ountil there is a -pause-, -getkey-, -arrow-, armp- command.This
blocking of other graphics objects prevents possible confusion from a second event interrupting ahd doit
ing the same unit, although sudhplication can occur iffou have a -pause-, -getkey-, -arrow-, or -jump-
command in the do-ne unit. You may need to set and check a ghuftble toguardagainst duplicationNote
also that -menu- events can take place during the processing of -button-, -slider-, and -edit- events.

The systemvariablezleftdown or zrightdown is TRUE if the left or right mouse button ¢sirrently held
down, and this makes it possible to waitperformsome action until theiser has finishechoving theslider
and released the mouse button.

If unable to create aslider

If not all of a slider would be visible due to part of the slider being off screen or clipped, the stidecisated,
andzreturn is set to 2.0nce a slidehas been successfultyeated, it is unaffected dater -clip- commands:
clicking a slider temporarily removes the clip in order to manipulate the slider.

If a slider object can bereatedsuccessfully, the systerariablezreturn is set to TRUE (-1). If it cannot be
created due to lack of computer memameturn is set to 1. An attempt to reset the value of an inadlider
setszreturn to 3.

Fake mouse events generated by a -press- command are ignored by sliders.

Example:
unit xSlider
slider: SpeedAdjust
f. angle
at 3,3
write Adjust the rotation speed:
slider SpeedAdjust; 10,20; 25,140; x; range, -20,+20; value, 10
rorigin 110,80
rotate angle :=0 $$ initialize angle
mode xor
loop

147

MOUSE & KEYSET INTERACTIONS

rdraw 60,0; -40,-20; -40,20; 60,0
pause 0.1
rdraw 60,0; -40,-20; -40,20; 60,0
rotate angle := angle+zvalue(SpeedAdjust)
endloop
SeeAlso:
button Buttons to Click (p- 142)
Scrolling Text Panels (p. 149)
clip Limiting the Display Area (p. 63)

148

SCROLLING TEXT PANELS
Scrolling Text Panels

edit: Creating a Text Panel

The -edit- command displays editable text that the user can manipulate (scroll through the text, copy parts of the
text, etc.). Before anedit- commandnay beused a corresponding ed#riablemust bedefined.This variable
identifies the edit panel in subsequent commands:

define edit: myedit

Just as with file variablegdit variables can bpassed byaddress tasubroutines. Tweedit variables can be
compared with "=" or "~=",

The form of the -edit- command is

edit variable; rectangle; unit; text; keyword; keyword; ...

edit myedit; 35,135; 120,235; DoHot; m1; vscroll; editable
The "rectangle" defines the area of the screen containing the text panel, the spatifisdssociatedvith "hot
text" (discussedater), and"text" is the string to belisplayed inthe edit panel.(The unit may have asingle
integer or float pass-by-value argument, just as with the unit meau- command). Therealso redit- and
-gedit- commands that use relative or graphing coordinates.

If no unit for treating "hot text" is associated with the edit panel, the unit name must be given as x:

edit myedit; 10,20; 150,60; x; "Click Here"; hscroll
vscroll; single select $$ can be continued onto a following line

Keyword options
The keywords that specify an edit panel's basic properties are:

hscroll edit panel should have a horizontal scroll bar
vscroll edit panel should have a vertical scroll bar
editable text in edit panel may be altered by the user
(the edit marker must lohangeable
frame draws a box around the edit panel (normally TRUE)
erase edit panel should be erased when destroyed
visible specify portion of text to be visible in the panel;
e.g.,visible,m1
select specify portion of text to be selected; e.g., select,m2
tab set tab width (tab,5 means 5-pixel tabs)
newline set newline height (newline,30 for example)
supsub set super/subscript shift (supsub,10 for example)
supsubadjustFALSE is like -inhibit supsubadjust-
leftmar set width of margin from left edge (default 3 pixels)
rightmar set width of margin from right edge (default 3 pixels)

single select TRUE causes a single click to act as a double-click

focus click FALSE causes the first click of an edit panel which does not
currently have the focus to go directly to the panel, without
having to click twice (once to focus, again to select)

highlight FALSE causes the edit panel not to highlight selected text

before event process events before they are sent to the edit panel (see below)

149

MOUSE & KEYSET INTERACTIONS

after event process events after they are sent to the edit panel (see below)
Any of the keywords other than "visible", "selectiefore event", and "after event" can beaccompanied by an
expression that is TRUE or FALSE &mable or disabléhat feature, or a number fdab in absolute €édit-),
graphing (gedit-), or relative coordinates (-redithor example, in the followingedit- commandhe frame
option will be deactivated:

edit myedit; 10,20; 150,60; x; "Click Here"; frame, FALSE

For the visible and select options, you specify a marker on the text displayed in the edit panel. Toptgmiect
scrolls the text so that the selected region is visible iretlitgpanel,and if the edit panel is in focugsee the
-focus- command) the selected text is highlighted. For the visible option, the first line showingedit thanel
will be the line that contains the start of tagsociatednarker.Here is anexample of anedit- commandhat
uses the visible option to make the last line of the text be visible in the edit panel:

edit myedit; 10,20; 150,60; x; m1; visible,zlast(m1)

You can change any property of aristing edit panelwith a "reset" version of theedit- command, as in the
following example:

edit reset, me; select, markerl2 $$ change selected text
Also, you can change the unit that handles "hot" text:
edit reset, me; hot, SomeUnit(3) $$ change hot-text-handling unit

When an edit panel is active, the system variabtit is set to be equivalent to the correspondidg variable;
zedit doesn't change until another edit panel is made active, or the edit panel is destroyed.

Marker functions for regions ofthe text
The "zeditsel)" function returns a marker othe currenttext selected by dragginthe mouse: for example,
zeditsel(myedit) or zeditsel(zedit).

The "zeditvis()" function returns a marker omhe text currently visible within anedit panel: for example,
zeditvis(myedit) or zeditvis(zedit).

The "zedittext()" function returns a marker othe entire textassociatedvith an edit panel: for example,
zedittext(myedit) or zedittext(zedit).

You cannot store into a regi@pecified byzeditse(editvar), zeditvis(editvar), orzedittext(editvar). If you
want to change such a region, first use one of these functions to obtain a marker variable bracketing the region:

calc m :=zeditsel(zedit)
replace m,'hello"

Changing text in the edit panel

Changing the actual displayed text does not require using the "reset" option. Whenever you make a change in the
edit panel'smarker byusing replace, -append-, ostyle-, theedit panelnotices thisand updatesits display
accordingly. If, however, you use -calc- or -string- to place the original marker around new text, the marker is no
longerassociatedvith the edit panel, and you can nolonger affect the textdisplayed inthe edit panel by
executing -replace, -append-, or -style- on the original marker.

150

SCROLLING TEXT PANELS

Which edit panel gets theinput?

There is only one keyset but there can be several edit panels active on the screerditVpatelreceives the
keyset information can be switched by the user clicking in another panel, or by the program exedoting a -
command. If no edit panel has been selected for input, keyset inputs gpaosa--or -arroneommand.Often

it is appropriate to execute -focus myedittht after the edit- command, to make sure that théit panel is
already selected for input. See the topic "focus Focus on a Text Panel".

Hot text
See the topic "Hot Text" for an explanation of how to construct "hyperieks, in whichdouble-clicking a
word or phrase in an edit panel triggers the execution of a unit.

Processing events yourself
See the topi¢Before andAfter Edit-PanelEvents" for details orhow to intercept keysednd mouseevents
before and/or after an edit panel handles the events.

Destroying an edit panel
An edit object may be destroyed by an -edit- command with no keywords:

edit myedit

Edit panels are also destroyed by -jump-, a new maity orwhen a locakdit variable becomes invaligoon
leaving a subroutine. If the edit panel was created with the "erase" keyword, the edit panel is autoarasiedlly
when it is destroyedind that area of the screen is cleared towiadow color that was in effect at theme the
edit panel was createtf.the "erase" keyword is not used, an edit panaidserasedvhen it is destroyedbut it
stops accepting inputs).

Locking out additional events

When a specifiedhot-text unit begins executing, cdoesnot process any othetutton-, slider-, and -edit-

events until theend ofthat unit isreached, ountil there is a -pause-, -getkey-, -arrow-, jump- command.

This blocking of other graphics objects prevents possible confusion fresnoadevent interrupting theinit

and do-ing the same unit, although such duplication can occur if you have a -pause-, -getkey-, -arrow-, or -jump-
command in the do-ne unit. You may need to set and check a ghiethle toguardagainst duplicationNote

also that -menu- events can take place during the processing of -button-, -slider-, and -edit- events.

If unable to create an editpanel

If not all of an edit panel would be visible due to part of the panel kaffragcreen orclipped, the panel isiot
created, andreturn is set to 2. Once an edit panel has been successfedlied, it is unaffected Hater -clip-
commands: clicking an edit panel temporarily removes the clip in order to manipulate the text.

If an edit-panel object can be created successfully, the system varitoie is set to TRUE (-1). If ittannot
be created due to lack of computer memargturn is set to 1. An attempt to reset the value of an inailie
panel setzreturn to 3.

Fake mouse clicks generated by a -press- command are ignored by edit panels.

Examples:
unit XEditText
edit: Gettysburg
m: Gtext
at 6,6
write Select part of the text with the mouse:
string Gtext

151

MOUSE & KEYSET INTERACTIONS

Fourscore and seven years agaor fathers brought forth on this continent a new nationgeived in
liberty, and dedicated to the proposition that all men are created equal.
\

edit Gettysburg; 20,30; 200,140; x; Gtext; vscroll; editable
loop
pause 0.5
if zeditsel(Gettysburg) ~= zempty
erase 35,160;200,245
text 35,160;200,245
<|s,zeditsel(Gettysburg)|>
\
endif
endloop
unit xScrollText
i: wc

edit: testedit
m: edittxt,word
* This example uses the visible and select options.

string edittxt
line 1 of text
line 2 of text
line 3 of text
line 4 of text
line 5 of text
line 6 of text
line 7 of text
\
calc word = zstart(edittxt)
loop wc:=1,10
calc word := znextword(word)
endloop
style word,; italic; blue $$ make 10th word italic and blue
* Create edit panel, make 10th word visible at top of panel:
edit testedit; 10,10; 125,75; x; edittxt;vscroll; visible,word
focus testedit
pause 2
calc word = zstart(edittxt)
wc:=0
loop
calc word := znextword(word)
wc = wc+1l
edit reset,testedit; select,word $$ change selection
if word = zempty
calc word = zstart(edittxt)
endif
pause 0.1
endloop
SeeAlso:
focus Focus on a Text Panel (p. 153)

Hot Text (p. 153)
Before and After Edit-Panel Events (p. 154)

152

SCROLLING TEXT PANELS

A File Editor Application (p. 155)

style Assigning Styles to Markers (p. 262)
button Buttons to Click (p- 142)

slider Slider or Scrollbar (p. 146)

clip Limiting the Display Area (p. 63)

focus: Focus on a Text Panel

There is only one keyset but there can be several edit panels active on the screerditVpartelreceives the
keyset information can be switched by the user clicking in that panel catoalso force keyset information to
go to a particular panel by executing a -focus- command.

define edit: myeditl, myedit2

edit myeditl: .

edit myedit2; ...

%&cus myeditl $&end keyset input to myeditl edit panel
1.‘(‘)lcus $blank-tag means don't send keyset input to

3 an edit panel (send to -pause- or -arrow-)

SeeAlso:
edit Creating a Text Panel (p. 149)

Hot Text

A powerful feature of edit panels is "hot text." It is possiblespecify that avord or phrase appearing in an
edit panel is'hot text,” andwhen a user double-clicks dhat word or phrasethe unit specified inthe edit-
command is do-ne (a single click is sufficient if the "single select” option is specified witleditecommand).
This makes it possible to link together texliiagrams,and even videosegments as ainterconnected
"hypertext."

To make a word or phrase be hot text, select the text in the program (typically in a -stricee-ocommand),
just as though yoweregoing to make that text be italic or bold. Then choose "Hot" fronStlyees menu.
You will be prompted to type a string to hsesociatedvith this hot text (at thgresentime, youcannot use
Command-= when entering this text on the Macintosh). If the text is displayed widdiartemmand, the hot
unit will be do-ne whenever the user double-clicks on the hot text. A hotastgll@ssociatedtring canalso be
created with a -style- command. Currently the associated string must not exceed 80 characters.

The system functiorzhotse(myedit) gives amarker onthe hot text, which mighinclude several words,
whereagzeditse(myedit) typically brackets just one word of the hot text that was double-clicked on.

The system functiomhotinfo(myedit) returns the information associated with the last click of hot teatlitn
panel "myedit". Youcan also usezhotinfo(anymarker),which will return the stringassociatedwith that

marker, which need not be in an edit panel. If you zlsginfo(anymarker) on anarkerthat has no hotext,

you get zempty. You can also udeasstyléanymarker, hot) to check whethtirere is anyhot textassociated
with a marker. If you usehotinfo(anymarker) on a marker that has more than meee ofhot text, you get
all the information, concatenated into one string.

You can change the unit that handles "hot" text:

153

MOUSE & KEYSET INTERACTIONS

edit reset,myed; hot, SomeUnit(3) $$ change hot-text-handling unit
Example:
unit xHotExample

edit: textvar

marker: sometext, double
string sometext
Here is some text displayed by the
-edit- command. Double click
the hot text and see what happens!
\

calc double := zsearch(sometext, "Double click")
style double; italic; red; hot,"This is powerful!"

edit textvar; 10,10; 220,150; Handlelt; sometext
pause $Pause so as not to quit executing

*

unit Handlelt

erase 10,160; 400,250

at 10,160

write The mouse selection is "<|s,zeditsel(zedit)|>",

the hot text itself is "<|s,zhotsel(zedit)|>",
and the associated string is "<|s,zhotinfo(zedit)|>".

SeeAlso:
edit Creating a Text Panel (p. 149)

Before and After Edit-Panel Events

You can do your own special processing of keyset and mouse events before or after they are processiid by the
panel. Consider the following -edit- command:

edit myedit;10,10;100,100; x; text; before event,left down,Ebefore;
after event,key,Eafter $$ can be continued onto another line

When there is a mouse "left down" event in the edit panel, unit "Ebefore" is done before the mouse event is sent
on to the edit panel. When a key on the keyset is pressed, unit "Eaftiridsafterthe key haseenprocessed
by the edit panel.

With "before event" and "after event" you can specify "key", "left down", Ugft, "right down", "right up”, or
"down move". A "before" or "after" unit can optionally have one integer or float pass-by-value argument, as in
"Ebefore(5)".

The system variableeditkey is set when a "before" dafter" unit is done,and it has the same interpretation
aszkey, which isnotreset by events that are sent to an edit panel.

The systenvariableszeditx andzedity give thecurrent screefocation of the cursor in thedit panelthat
currently is in focus.

The functionztextat(edit-panel, x-position, y-positiorfeturns a marker oithe character inthe text of the
specified edipanel within which isfound the specifiedx,y position. If youspecify anx,y position that is

154

SCROLLING TEXT PANELS

outside of theedit panel, you will get anarker atthe beginning oend of the line nearestthe specified x,y
position.

In a unit processing "before events" sent to an edit panel, a -caooghandthrows awaythe event, so that it
is not sent to the edit panel:

cancel $dblank tag; cancel edit-panel event
You can change the specifications for how to handle before or after events:
edit reset, myedit; before event,right down,NewUnit

In the sample programdistributedwith cT, japan.t uses"before events" to let you typdapanese "Kanji"
characters.

Example:
unit xEditEvents
edit: ed1, ed2
m: ml, m2
string ml

Click in either of these edit panels and observe the effects.
\

string m2

The "Before" unit processes "left down" events.

\

edit edl; 15,30;150,80; x; m1; frame
before event, left down, Before

edit ed2;40,100;173,151; x; m2; frame
before event, left down, Before

*

unit Before
m: mtemp

calc mtemp ;= ztextat(zedit,zeditx,zedity)

style mtemp; bold; red

edit reset, zedit; select, zstart(mtemp)

cancel

*

SeeAlso:
edit Creating a Text Panel (p. 149)
focus Focus on a Text Panel (p. 153)

A File Editor Application

Here is a basic fileditor that uses theedit- commandandfile commands to creatmspect, or modifystyled

text files. When editing a file yoganapply boldanditalic styles,andyou could easily addmore features. On
Macintosh orWindowsyou can everpaste in an imageopied from another application. One usefthange
would be tofix up the editor to openseveralfiles at the same time, so yaancopy and pastebetween two
files.

An existing file may contaiseveralsections of styled text if the file wagenerated byseveral -dataout-s of
markers. The fileeditor shown below justeadsthe first section of such a file, but in the samplegrams

155

MOUSE & KEYSET INTERACTIONS

distributedwith cT there is a moreomplex versiorcalled editfile.t that keepdrack of multiple sections by
wrapping a marker around each of them, and when you save the file it writes the sections out one at a time so as
to preserve the original structure of the file.

* The -define- must be in the IEU (initial entry unit),

* before the first -unit- command:

define group,files:
file: fd $$the file that is read and written
m: text $3 the full text of the file
group,styles:
i BOLD=1, ITALIC=2 $$for unit xSetStyles

unit xInitial
menu File; Open file: xOpenFile
menu File; New file: xNewFile
at 10,10
write Choose Open file or New file on the File menu.
*kkkkkkkkk
unit xEdit
merge files:
merge,styles:
edit: display
i: nn
menu File; Save file: xSaveFile
menu Styles; Bold: xSetStyle(BOLD)
menu Styles; Italic: xSetStyle(ITALIC)
edit display; 0,0;zxmax,zymax; Xx; text; hscroll; vscroll; editable
focus display
*kkkkkkkkk
unit xSetStyle(style)
i style
merge,styles:
m: selection
calc selection := zeditsel(zedit)
case style
BOLD
style selection; bold
ITALIC
style selection; italic
endcase
*kkkkkkkkk
unit xOpenFile
merge files:
i: nn
m: temp, last
setfile fd; zempty; rw; styled 3 open styled file
if zreturn
calc text := zempty $$ delete all text
datain fd; text
jump xEdit
endif
*kkkkkkkkk
unit xNewFile
merge files:

156

SCROLLING TEXT PANELS

addfile fd; zempty; styled

if zreturn
calc text := zempty $$ delete all text
jump xEdit
endif
*kkkkkkkkk
unit xSaveFile
merge files:
i: nn
reset fd; empty

dataout fd; text

*

SeeAlso:

edit Creating a Text Panel (p. 149)

style Assigning Styles to Markers (p. 262)
addfile Create a File (p. 289)

setfile Select &ile (p. 291)

datain Read Data from a File (p. 294)

dataout Write Data to a File (p. 298)

Sample Programs (p. 28)

157

MOUSE & KEYSET INTERACTIONS
Word & Number Input

Overview of Word & Number Input

Typed words and numbers can ibput using anarrow- commandandthere is asuite of"response-judging”
commands and options to analyze or evaluate the user input.

The response-judging commands miot standalone. They all interacaind the order of the commands is
important. The basic structure is

arrow
response-judging commands
endarrow

The -arrow- command displays a pointy symbol (">")rtdicatethat a response isxpectedThe user enters a
response and presses ENTER. The response-judging commands itherpreer's responsed reportwhether
the response is "ok". The user may paiceedpast the endarrow-until his/herresponse is in a forjudged
acceptable by the program. However, the user can, at this pelatt any of the optiongrovided on anenu,
such as Review or Get Hellp.is up to the programmer tprovide some meanfor the user to escapéom an
-arrow- if no response is accepted.

The answer and wrong- commandsare usedvhen a simplephrase or sentence responseipected. These
commands provide for synonymous or ignorable words.

The -answ command is usewhen the response is numerical or algebrditien the response involves a
number to be stored or a mathematical expression to be evaluatemnipeite- command is used.

The default rules for acceptable input may be modified wipacs command. For example, executirgpecs
okspell- allows misspelled input to be considered valid.

The suite of response-judging commands associated with -arrow- do not attempt to "understand" user input in the
sense of artificial intelligence. Rather, they try to make it possible for the program autimerpoet or
evaluatea wide range of user inputs, assuming that the user is trying to make a sensible input.

The -arrow- and response-judging commands are useful for checking the valigipedinput, giving feedback
about invalid input, and automatically looping until a valid input is obtained. For example, is amumplogr
within a specified range? Ifiot, remindthe user about thémits on the input,andlet the user ltange the
number. In a language drildlid the user type theorrectform of the pastense? Ifnot, tell theuser what's
wrong and allow him or her to correct the input.

There are some situations where thdit- command provides more flexible way to enter keysgtformation,
but without the built-in feedback and looping mechanisms provided by the -arrow- command.

SeeAlso:
arrow Soliciting a Response (p. 159)
answer Expected Responses (p. 162)
ansv Numerical Responses (p. 163)
compute Storing and Evaluating Inputs 1p5)
Modifying Judging Defaults (AL69)
Scrolling Text Panels (p. 149)

158

BASIC JUDGING COMMANDS

Basic Judging Commands

arrow: Soliciting a Response

The arrow- command is used to handtieyset inputs,and it causes severalctions. It displays aarrow (a
pointy symbol like this: >) on thecreen to indicate tthe user that a response @gpected, prepares the
program to receive the responseand places thechoice (Enter Response)on the Option menu. The
-endarrow-commandmarks theend ofthe program segment that isfluenced bythe arrow-. Every arrow-
must be balanced by an -endarrow-.

arrow beginx,beginy
arrow beginx,beginy; endx,endy
arrow $$may have blank tag

endarrow $$ never has a tag

When the user enters a response to an -arrow- commaaqhetirs tahe right of the arrow. While the user is
entering a response, he/she can use the mowshtthe input, toselect a special region on the display, or to
choose a menu item.

The tag of -arrow- is a screen position that specifies where the arrow will appear. The blank tag éorow-of -
plots the arrow at the currestreenposition. If the tag starts with a semicolon, therent screeiposition is
used.

The tag istreatedjust like the tag of amat- command irterms of setting margins fanput (but the arrow-
resets the lower-right margin to the lower-rigiarner ofthe window for outpu). If the tagincludes two
positions, the tw@ointstogether specify a bounding box for thgace allowedor the user's response. The
arrow always appears at thpper-left corner othe boundingoox. Thetwo-coordinateform should usually be
used; otherwise, the automatic erasing associated with -arrow- may erase too large an area.

Thedisplayof the arrow can be suppresseith -inhibit arrow-. This inhibits only the visible prompt; ioes
not affect the other -arrow- actions.

A new -arrow- may be nested within a current arrow. The inner arrow mesinfygeted beforeeturning to the
outer arrow.

The user's input is available as the system marker vadablewm, and any portion of the input that hiasen
selected with the mouse is available as the system marker vaidalde/sel.

Associated with every -arrow- is at least one "response handling" command. These codeteamise whether
the user's input isicceptableThe usercannotcontinueuntil a satisfactoryinput is given. In theexample
below, we will discuss in detail the -arrow- and its response handling commands.

Note: Another way to handle keyset inputs is with egiit-command, especially if you arem'sing answer-,
-ansv-, or similaresponse-handling commands. fiandlemouse as well as keyset inputs at amow-, you
must use a -buttorcommand, or execute -enaliteuch- before the arrow- andlimit the screenarea of the
-arrow- with the four-argumentorm, since mouse clicks inside tharow- regionaretaken to mean that the
user is editing a response with the mouse.

Example
unit Xarrow
at 50,50

159

MOUSE & KEYSET INTERACTIONS

write What color is grass?

arrow 50,100

answer green

. write Excellent!
wrong blue

. write That's the sky!
endarrow

at 100,200

write after the -endarrow-

*

The user types his/her response. The response can be edited agextri@henthe response is complete, the
user presses ENTER.

For the response "green," the comment "Excellent!" appears three lines'getew'and an"ok" is printed on
the same line and following the "green". The user has giveat@ptablagesponse, so execution immediately
continues after the -endarrow- and prints "after the -endarrow-".

> green ok

Excellent!

For the response "blue," the comment "That's the sky!" is printed three lines belowaidiiee word "no" is
displayed after "blue". Program execution theaits for the user t@orrectthe response by erasing "blue" and
putting in another response.

For the response "yellow," there is no explicit treatment specified. The program searches as fandartbe--
but does not find "yellow," so "no" is displayed and the program waits for a user action.

After a response is marked "no," the usean correct it bypressing ENTER tarasethe entire response, or by
editing the previous response. As soon as the user takes an action, the comment about the (tfesponse
"response-contingent display") is automatically removed.

Execution will not proceed past the -endarrow- until the arrow is "satisfied," that is, until the response is "ok".
The -arrow- might be thought of as initiating a series of "if" statements:

if the response is "green,"
display "Excellent!"
print"ok"
continue after the -endarrow-
else ifthe response i%lue,"”
display "Try again."
print"no"
wait for user action
else
print"no"
wait for user action

Examples:

This example allows the user to type anythingalht (The defaultrules for anarrow donot allow blank
responses.)

160

BASIC JUDGING COMMANDS

unit xarrowl

at 50,50

write Type something and press ENTER.

arrow 50,100

ok $$ any response is acceptable
. write Thank you.

endarrow

at 100,200

write after the -endarrow-

*

The example collects a number and uses it later. The coropoteand evaluatebe responsandstores it in
"X". The system variablereturn is TRUE if the response can be evaluated. The response-contingent write uses
an "embedded show command".

unit xarrow2

f: x
at 100,50; 300,150
write X=
arrow $Pexample using blank tag
compute X 3 evaluate response
ok zreturn $Fesponse is a value
. write 5x =<]s,5*x|>
no $$ response cannot be evaluated
. write | do not understand.
endarrow

*

This example shows a nested arrow. The second question is asked only if the user's first response is "two bits."

unit xarrow3
at 40,30
write What coin is worth 25 cents?
arrow 85,75 $%outer arrow
answer quarter
answer two bits
at 40,125
write Please tell me its
more common name.
arrow 85,190 $hested arrow
answer quarter
endarrow $%nd of nested arrow
endarrow $%nd of outer arrow
at 40,225
write after the endarrow
*
SeeAlso:

zarrovm Markers at an -arrow- (p. 256)
zarrowsel Selected Text at an -arrogp. 258)

zreturn The Status Variable (p. 332)
enable Allowing Mouse Input (p. 132)
Pull-down Menus (p. 136)

Judging System Variables (p. 330)

161

MOUSE & KEYSET INTERACTIONS

Embedding Variables in Text (p. 50)

pause Single Key & Timed Pause (p. 125)
Scrolling Text Panels (p. 149)

button Buttons to Click (p- 142)

answer: Expected Responses

The -answer- command is a response-judging comniaidgives a response that"ecceptable” at an -arrow-.
The -wrong- command gives a specific incorrect response. These commastdbebetween an -arronand an
-endarrow-. One -arrow- may have many -answer- and -wrong- commands.

The (optional) indented lines that follow response judgingommandsare called "response-contingent"
commands. Théndentedcommandsare executednly if the user'ssesponse matches the tag of the previous
response-judging command.

answer <Isee a> [big large] dog

. write woof-woof

wrong <lsee a big little> cat

wrong the <|s,num|> bears $$ can use embeds

The answer- commandpecifies anexpectedresponse. Ignorablevords are enclosed imangle braces <>.
Synonyms are enclosed sguare braces [Punctuation is optional unless spedjahlificationsare given (see
-specs-). Thus the -answer- command above is matched by any of these phrases:

| see a big dog!
a large dog
big dog

Position is important, so that "dog big" is nmirrect. However, ignorableords may appearany place in the
response, so these phrases would be correct:

a large | big see dog
big, | see a dog!

Silly possibilities such as those above are often tolerd&chuse it is samportant to allow flexibility in the
user's response. The author mfiistl a compromisebetweenflexibility andsilly responses that iappropriate
for his or her program.

See the section on "Modifying Judging Defaults" for ways to specify exactly hovartbeer- command should
work. In particular, the -specs- command lets you specify that extra words are allowed, that spelling mistakes or
different word order don't matter, that capitalization is optional, etc.

Examples

The incorrect response of cat, puss, feline, or kitten gets an explicit comment. Anyroteagnized response
is simply marked "no".

unit xanswer $3ise "Run from Selected Unit
next xanswer $ENTER to try this unit again
at 50,50

write What animal says bow-wow?

arrow 50,100

answer <the a> [dog hound canine]

162

BASIC JUDGING COMMANDS

. write Excellent!
wrong <the a> [cat puss feline kitten]
write Cats say meow!

endarrow

*

The next example uses conditional commands (-write- and -answer-) to build a 5-question "drill."

unit xanswer2 $3ise "Run from Selected Unit"
i Q
next xanswer2 $&an repeat this unit
randu Q, 4 $&elect one of 4 questions
at 50,50
write \Q-2\Where would you spend a "zloty"?

\What coin is "two bits"?
\What is the capital of South Dakota?
\Who wrote about Miss Marple?

arrow 90,90; 300,120
answer \Q-2\Poland\quarter\Pierre\<Agatha> Christie
endarrow
SeeAlso:
Modifying Judging Defaults (AL69)
Judging System Variables (p. 330)
ok Unexpected Responses (p. 164)
enable Allowing Mouse Input (p. 132)
Logical Operators (p. 201)

Conditional Commands (p. 18)

ansv: Numerical Responses

The -ansv-and wrongv- commands analyze numericasponses at an -arronfor evaluatingand storing a
numerical or algebraic input, rather than checking for specific values, see the -compute- command.)

ansv 29
ansv 50,5%
wrongv 50,10

The first argument of the tag is the value of éxpectedesponse. Any arithmetic expression thasluates to
the expectedvalue is acceptabldhe expressioman be algebraiandinvolve user variablegvariablesdefined
with -define user:-).

The second tag is the tolerance -- that is, how much the user's response may vary from the expected response and
still be acceptable. The tolerance may be expressed in percent or as a number.

Encountering an -ansv- or -wrongv- causes the program to try to numerically evaluate the user's response. If the
response cannot be evaluated, the system vadedtiern is set to a number that tells why tresponsecould

not be evaluated, and execution continues to search for a matching response-judging command:Z{ieéfan to

The Status Variable".) If no command is found that matches the response, the response is marked "no".

163

MOUSE & KEYSET INTERACTIONS

The -ansv-and wrongv- commandsare affected by specsnoops- (nooperators allowed, such a9, -specs
novars- (no user variabledlowed),and specsokassign- (without this, assignment inteer variables is not
allowed).

Example
unit xansv $$ use "Run from Selected Unit"
next Xansv $%ress ENTER to try this unit again
at 50,50
write How many states in the U.S.A.?
arrow 100,100
ansv 50
wrongv 50,1
. write You're off by 1.
wrongv 50,10%
. write You're within 10%.
no not(zreturn) $$ could not evaluate the response
. write Please enter only a number.
no
. write Sorry, you're way off.
endarrow
*
See Aso:
zreturn The Status Variable (p. 332)
compute Storing and Evaluating Inputs 1p5)

compute Computing with Marker Variables @b4)
Algebraic Responses (p67)

ok Unexpected Responses (p. 164)
specs Specifying Special Options (p. 169)
Plot Two User Functions Simultaneously (p. 281)

ok: Unexpected Responses

The -ok-and ho- commandsre usedvhen any response isorrect (or incorrect, respectively). The -ok-
command is frequently used when soliciting information such as "What isygoue?" The -no-command can
serve as a catch-all for responses that did not match any previous -answer- or -ansv- commands.

ok (X=7) | (zntries>3)
ok
no

The -ok-and no- usuallyhaveblank tags.When atag is present, it must be teue/false expression. If the
expression evaluates to TRUE the command is matched.

Example
unit xok $$use "Run from Selected Unit"
f. age
next xok 3 "next" repeats this unit
at 50,50
write Enter your age:
arrow 100,100

164

BASIC JUDGING COMMANDS

compute age

no zreturn != TRUE $$ can't evaluate response
. write Please enter just a number.
ok 4 < age <99
no
. write | think you are trying to fool me.
endarrow
*
SeeAlso:
Logical Operators (p. 201)

Conditional Commands (p. 18)

compute: Storing and Evaluating Inputs

The -compute- commargtores a number or numerically evaluates a mathematical expression. The number or
expression may be oremtered bythe user, or it may be a string cfiaracters generated tiye program. Any
variables in the expression must be defined as "user" variables at the start of the program.

compute variable $3 integer or floating-point variable
compute variablestring

The -compute- Wh only one argumergvaluates thestring in the inputbuffer zarrowm, that is, the last
response that the user typed. The resuflased inthe variablenamed inthe tag. The compute-with two

arguments isdiscussed inthe section orMarker Variables. (Refer to "compute Computing withMarker

Variables".)

If the string contains variables, these must have been defined as "user" vddefilesiser:) in the IEU of the
same file (initial entry unit preceding the first -unit- command).

The program must be able to detect when the string given tadhgute- command cannot be evaluated. For
example, "(3+4 /5" is not aoherentarithmetic statemenibecause evergpening parenthesis, "(heeds a
closing parenthesis, ")". For this purpose, tbempute- commandets the systemmariable zreturn. If the
string is wellformed,zreturn has the value "TRUE". If the string is natceptablezreturn has a positive
numeric value that specifies why the string cannot be evaluated. (Refer to "zreturn The Status Variable".)

If you want to allow the user to assign values to usaiablesyou must explicitly say so withspecs

okassign-. Thais, if there is a user variable "te input "z := 5" will be given #adzreturn value unless

-specs okassign- is in effect. Note too thgiecsnoops-and specs novars- can hesed todisallow the use of
other operators (such as +) or of user variables (such &l z)specs-options are cleared by an -arrow-
command but are maintained across main units (including execution of -jump-).

Examples
In both examples, the firstempute- merelysets zreturn; at that point we onlycare about whether it is

possibleto evaluatehe response. If the user hastered gunction that cannot bevaluatedthe response is
marked "no".

unit xcompute $$ use "Run from Selected Unit"
f: result

next xcompute $$ ENTER repeats this unit

at 35,66

write Enter an even number.

165

MOUSE & KEYSET INTERACTIONS

arrow 38,132
compute result 3 check for well-formed response
no not(zreturn) $Eompute not successful
write | do not understand your answer.
. Please enter a number.
ok frac(result/2) =0
no
. write Sorry. That is not an even number.
endarrow

*

In orderfor the secondexample to work, th@ariable"x" must bedefined as auser variablewith a -define-
statement at the beginning of the program:

define user: $Hhese two lines belong
fi x $$ in the IEU
unit xcompute2 $$ graph a user's function
merge,global:
fiy
$$ question & instructions:
at 20,20
write Enter a function of x:
at 50,70
write Try something like: 3sin(xDEG) + 2cos(2xDEG)
$$ prepare for graphing:
gorigin 80,190 3 show the graph axes & labels
axes 0,-95; 300,95 $¥lescribe axes
scalex 360 $B60 at right end of x-axis
scaley 5 $$ 5 aop of y-axis
labelx 90,15 $Habel x-axis every 90
labely 1 $$ label y-axis every 1
$$ collect the function:
arrow 150,20; 430,50 $$ ask for a function
compute y $$ is function a legal one?
ok zreturn $$ iflegal, continue past endarrow
endarrow
inhibit startdraw $$fixes initialization of line
loop x :=0,360,5 $$ x = 0, 5, 10, 15, etc.
compute y 3 function value for each x
gdraw X,y $$ previous point to x,y
endloop
SeeAlso:
zreturn The Status Variable (p. 332)
compute Computing with Marker Variables @b4)
znumeric Extract Number from Marker (p. 272)
Defining Variables (p190)
Basic Calculational Operations @00)
User Variables (p. 198)
inhibit/allow startdraw (p. 66)
specs Specifying Special Options (p. 169)

166

BASIC JUDGING COMMANDS

Algebraic Responses

Algebraic responses can be treated in a clever way that makes the program appear "intelligent,” even though it is
not. The trick is evaluation of the user's response for some generated values of the variables.

Example:

In this example, random values are assigned to a and b. The user's response is evaluatdeifistthesame

as (a+b)/2, which is the average of a and b, then the user's expression is correct. If the user's egmr@ssion
be evaluated, the system variabteturn is not TRUE. The systemariablezntries is used togive theuser
help after the third unsuccessful attempt.

The system variableopcnt counts the number of arithmetic operationghdreare more than twooperations
(+ and/), aspecial comment is given. Note thesponse "0.5(a+b)" also has two operationslua and an
implied multiplication. You can also use the system variabéecnt to find out how manyreferences to user
variables there are.

These lines, which declare "user variables,” must be placed at the beginning of your program:

define user: $$these 2 linesbelong
f: a,b $$ in the IEU

unit xalgebra $3se "Run from Selected Unit"
next xalgebra $$next" to repeat this unit
text 31,27;367,300

Write an expression for the
average of "a" and "b".
\

at 50,80
write average =
arrow zwherex,zwherey; 357,400 $$ position after the =
randu a $&ssign random values to a& b:
randu b $$ (0 <&l); (0<b<1)
ansv (at+b)/2
if zopent > 2 $$ system variable
write Yes, but that is not
the simplest form.
endif
wrongv a*b/2
write The average does not

require multiplication.
wrongv (a-b)/2

write The numbers should be
added, not subtracted.
no not(zreturn) $&an't evaluate
write Use only the variables
"a"and "b".
no zntries > 2 $$ three tries, give answer
write One correct answer
is (ath) /2.

endarrow
*

167

MOUSE & KEYSET INTERACTIONS

In the next example the userasked tosimplify anequation,and wemust guard against identities such as
"2+2=4", We treat "a" as thindependentariableand calculatethe correct correspondingalue for"b". If the
result is TRUE, waalter "b" andtest again: an identity such as "2+2=4" will continue to be TRUE, but a
correct equation will now be FALSE.

define user: $$ these 2 lines belong
f: ab $$ in the IEU

unit xidentity 3 use "Run from Selected Unit"
next xidentity $$ "next" to repeat this unit

at 31,27

write Simplify the equation

3a-2b+5-a = 4b+8
* Possible answer is 2a-6b = 3 (4 operations)

arrow 50,80; 357,400
randu a $&ssign random values to a
calc b :=(2a-3)/6 $$ correct value for b
ansv TRUE
randu a $%hange value of a
wrongv TRUE
write That is an identity.
if zopcnt > 4 3 system variable
write That is not the
simplest form.
judge wrong
endif
wrongv FALSE
write Your equation is false.
no not(zreturn) $®an't evaluate
write Use only the variables
"a"and "b".
no
write You must write an equation.
endarrow
*
SeeAlso:
zreturn The Status Variable (p. 332)
Defining Variables (p190)
User Variables (p. 198)
Logical Operators (p. 201)

168

MODIFYING JUDGING DEFAULTS
Modifying Judging Defaults

Response Judging Defaults

Many default assumptionsare providedwith the response judging commandall of these defaults can be
modified to allow the author to customize all or some of the -arrow-s in the program.

The -arrow- assumes that a matching response must be found before execution can afterttheeendarrow-.
The -judge- command modifies this requirement. The -iarrow- and -jjudge- comarandsed tanodify -arrow-
defaults in a systematic way.

In order to bé'correct,"the user's responseust exactly match one of the respongesvided bythe author,
excepffor punctuation. Any punctuation (., ! ?) not explicitly mentioned by the author is optionalsfgdus -
punc- command modifies this assumption. Other -specs- options permit misspelled words, extraptiords,
capitalization, and free ordering of words.

Blank responses are ignored. Tihgtif the user selectEnter Responsefrom the menu or presses ENTER
when there imnothing typed afterthe arrow prompt, therequestfor judging is simply ignored. This can be
modified with -allow blanks-.

Because the square and pointy brackets ([] < >) are used as part of the syntavarmdwbecommand, those
symbols cannot be part of the expected response in an -answer-. The -exact- command can be bsskédtthe
must be identified.

Response "markup” is provided on all responses judged by -answer- and -wrong-. The -specs coomeankel
suppresses this markup. Other -specs- options, such as "okapdifyy the interpretation of the response and
thus also modify the markups.

The markups show how the user's respdtiffers from the answer- or -wrong- commaritiat it mostnearly
matches. In thigespect, -wrong- commands must usedwith some cautionbecause aser maysucceed in
"correcting" a response, only to find that it is a correctly entecsdrectresponse.

A word that is incorrectly spelled is changed to italics:
a big greyelefant

An unrecognized word is changed to bold:
a big greyskizzle elephant

A missing word is indicated by empty brackets:
a[] grey elephant

A word out-of-order is preceded by a <- symbol:
a [] grey <-big elephant

A missing capital letter is marked by a ~ symbol:
George “washington

Word order is assessed left-to-right, sooat-of-ordersymbol isalwayspairedwith a missing-wordsymbol to
its left.

specs: Specifying Special Options
The -specs- command is used to modify the default behavior of the response-judging commands.
specs okspell, nookno $$ may combine tags

specs clear $$ cancels previous -specs-

169

MOUSE & KEYSET INTERACTIONS

Here is a summary of the -specs- tags. Each tag is illustrated with an example below.

clear cancel any previous -specs-

blank tag is synonymous to -clear-
nomark do not show errors in response
nookno do not display "ok" or "no"
noops no arithmetic operators allowed
nospell turn off spelling checker
novars no variables allowed
okassign permits user to use assignment (:=)
okcaps capitalization is optional
okextra extra words are okay
okorder words in response may be in any order
okspell consider misspelled words as correct
punc punctuation must be exactly as given

The specs- commandormally appears after an -arro@ommandbecause -arrowresets all specs-options.
However, theokassign noops, andnovars optionscan be used teontrol -compute- in thabsence of an
-arrow-, and -specs- options are not reset across a change in main unit (e.g., with -jump-).

Examples

In -unit xspecsl-, the tagkextra andokcapsallow extra words and make capitalization optioedceptable
responses include

george washington
G. Washington
Washington George it was.

Another acceptableresponse, which illustrates thdanger of using okextra, is: "It was not George
Washington."

Multiple -specs- commandare cumulative. The twospecsdines belowcould have been combingdto one
line.

unit xspecsl

at 50,50

write Who was the first president of the U.S.A.?
arrow 75,100

specs okextra 3 extra words ok

specs okcaps $apitalization optional
answer [george g] washington

endarrow

*

The -specs- command does not have to appear before the first judging command. It may be insemsgddle the
of judging, to change the judging requirements. In -unit xspecs2-, the exact spelling is looked for first. If that is
not found, an approximate spelling is accepted.

unit Xspecs2

at 50,50

write What is the chemical name
for aspirin?

arrow 100,100

170

MODIFYING JUDGING DEFAULTS

answer acetylsalicylic acid
write Excellent!

specs okspell

answer acetylsalicylic acid $$ arrive here if misspelled
write You've got the right idea.

The correct spelling is
acetylsalicylic acid.
endarrow

*

In general, the -answer- command does not pay any attention to punctuatioraddackbythe userHowever,
punctuation markcluded bythe authomustbe included inthe response. Theunc tag requiresthe user's
punctuation to exactly match the author's punctuation.

Thenomark tag prevents the normal markups. In -unit xspecs3-wiirds ofthe desiredresponseare shown,
so we assume that clues about spellimgler,and word order araot required.Since anexact responsiith
punctuation isrequired, wedon't want to clutter the response liméth an "ok," thereforethe specs- also
includesnookno.

unit xXspecs3
at 50,50
write Put correct punctuation and

capitalization into this sentence:

stop do you have a ticket

arrow 80,120
specs punc, nomark, nookno
answer Stop! Do you have a ticket?
write Excellent!
specs clear 3 cancel previous -specs-
wrong Stop Do you have a ticket
write Your punctuation is incorrect.
endarrow

*

Theokorder tag allows the words of the response to appear in any order.

unit xspecs4

at 50,50

write Name the five Great Lakes.

arrow 75,100

specs okorder

answer Erie Huron Michigan Superior Ontario
endarrow

*

The noopstag forbids the use of arithmetic operators (+ - * /) in a response. If an arithopetator isused,
the specsnoops-causes evaluation téail and zreturn is set. Speciafeedbackfor arithmetic operators in
responses also may usepcnt

The novars tag forbids the use of variables in the response. \faaable is usedthe specs novarseauses
evaluation to fail andreturn is set. Special feedback for variables in responses also mayarset.

171

MOUSE & KEYSET INTERACTIONS

The -computecommand inthe following example imecessary, because tiiggers evaluation of the user's
response and sets theeturn, zvarcnt, andzopcntvalues. The -ansv- would also trigger this evaluation, but

it needs to come last, after all the error cases have been eliminated. In "xspecs5", the variable "temp" is used as a
dummy variable because -compute- must have a place to store its result.

unit xspecs5 $Pise noops & novars
i: temp

at 100,50

write Suppose a =3

What is (a*af->?

arrow 100,120
specs noops, novars
compute temp $$ evaluate response
no zreturn =0 $$ operators used
write You must not use any
arithmetic operators.
no zreturn = 10 $$ -specs novars-
write You must not use
any variables.
no not(zreturn)
write Cannot evaluate
your response.
ansv 3
endarrow
*
unit xspecsbalternate $e zopcent & zvarent
i: temp
at 100,50
write Suppose a =3

What is (a*af-> 2

arrow 100,120
compute temp $3 evaluate response
no zopcnt>0
write You must not use any
arithmetic operators.
no zvarcnt > 0
write You must not use
any variables.
no not(zreturn) $$ catch other errors
write Cannot evaluate
your response.
ansv 3
endarrow

*

The next example assumes that you have already defined user variables at the very beginning of the program:

define user: $%hese linebelong
f:x,y,z $$inthe IEU

172

MODIFYING JUDGING DEFAULTS

When drawing araph or making calculations, the user nmaed toset certain valuesnto variables. The
assignment operation is not legal widmsv- or -computeunless the specs-tag okassign is used. The
-compute temp- isequired totrigger evaluation of the user's response, so zhetturn will have meaningful
information.

unit xspecs6 3 previously defined: x, y, z
merge,global:
f: temp

next Xspecs6 $8Run from Selected Unit"

calc X=y:=z:=5

do CurrentValues $Hlisplay x, y, z

at 50,100

write Enter new value (as, y:=9)

Enter "Q" to quit.

arrow 50,150
specs okassign 3 allow assignments (:=)
answer Q
compute temp 3 evaluate response
ok zreturn
do CurrentValues
judge ignore 3 cycles back to arrow
write Cannot evaluate
your response.
endarrow
*
unit CurrentValues
erase 50,50; 250,90
at 50,50
write Current values:
X=<[s,X|>; y=<|s,y|>; z=<|s,z|>
*
SeeAlso:
Judging System Variables (p. 330)
Logical Operators (p. 201)

Conditional Commands (p. 18)

jarrow: Arrow Initializations

The -iarrow- command specifies a unit that will be do-ne immediately after aaolwv- command irthe current
main unit.

iarrow arrowunit
iarrow q $3cancel any previous setting

This command is usually used only in specialized situations where the normal arrow defaults are not appropriate.
It is often placed in the -imain- unit.

When -iarrow- is in effect, the execution of an arrow behasagthe program were written like this:

arrow 100,100
do arrowunit

173

MOUSE & KEYSET INTERACTIONS

specs
answer

nookno
hello

The indentedcommandsare doneimmediately after the arrow is encountered. Wheahe user hasntered a
response, execution starts with the finenindentedine. If the first response wasncorrect and a second
response is tried, then execution again starts with the first nonindented line.

Example:

This example usesafrow- to write areminder tothe userunder eacharrow. The judge- supplies a specs
okcaps- for each arrow. (This example would undoubtedly be poor design for a lesson, but it steeepsetive
of execution.) To execute this example, select unit "Atitle" and "Run from Selected Unit".

174

unit
next
text

\
imain
*

unit
at
write

arrow
answer
endarrow
at

write

arrow
answer
ansv
endarrow
*

unit

at

write
iarrow
jjudge

*

unit
at
write
*

unit
specs
at
write

*

Atitle
Questions 3 press ENTER for next unit
0,50

A Title Page

Press ENTER to continue

mainunit
Questions
50,50

What animal is
"man's best friend?"
zwherex+10,zwherey; 250,80
[dog hound puppy mutt]
$%nd of first arrow
50,150
How many stars
on the U.S. flag?
zwherex+10,165; 250,180
fifty $$ answer with a word
50 $$ or vth a number
$%nd of second arrow

mainunit

0,0

using -iarrow- and -ijudge-
arrowsetups

judgesetups

arrowsetups
70, zwherey+25 3 below arrow
Please answer briefly!

judgesetups
okcaps
100,zwherey
[now judging response]

MODIFYING JUDGING DEFAULTS

SeeAlso:
jjudge Judge Initializations (p. 175)
ifmatch After the Response (p8s1)
imain Modifying Every Unit (p. 232)

jjudge: Judge Initializations

The -ijudge- command specifies a unit that will be do-ne each time the user presses a key thatagfi@tss
judging.

ijudge judgeunit
ijudge q $$cancel any previous setting

This command is usually used only in specialized situations where the judging defanlit appropriate. It is
often placed in the -imain- unit.

When -ijudge- is in effect, the execution of an arrow behaséfthe program were written like this:

arrow 100,100
=> do judgeunit

specs nookno

answer hello

The pointer indicates where the -ijudge- unit is do-ne as though there were a -do- command.

The example for -ijudge- is with the -iarrow- discussion.

SeeAlso:
iarrow Arrow Initializations (p. 173)
ifmatch After the Response (p81)
imain Modifying Every Unit (p. 232)

eraseu:. Erasing after a Response

The -eraseu- command specifies a unit that will be do-ne when the user presses any key after a refjgense has
judged "no".

eraseu someunit
eraseu g $8ancel any previous setting

The -eraseu- command is used when the default erasing of the last response-contingent text is not sufficient. The
-eraseu- may be placed in any position in the unit, so long as it is executed before the eresidedifhe "q"
tag cancels any previously set -eraseu- unit. The -eraseu- option is cleared at the end of a main unit.

Example:

In this example, if the user makes @mor, alittle diagram is drawnThe -eraseutremoves thaliagram. Note
that the erasing is not donatil the user presses a key

unit Xeraseu
draw 100,25; 100,150; 200,150; 100,25
at 25,200

175

MOUSE & KEYSET INTERACTIONS

write What is this figure?

arrow zwherex+10,zwherey

answer right triangle

wrong triangle $3ncomplete response
eraseu zapit 3 set special erase
at 55,239
write Your answer is not

specific enough.

What is the indicated angle?

. do diagram $Show angle
endarrow

unit zapit 3 remove diagram

mode erase $evrite with "white dots"
do diagram $edisplay diagram

mode write $$return to "black dots"
unit diagram $Fight angle illustration
draw 101,133; 117,133; 117,149

draw 101,134; 116,134, 116,149

vector 24,176;93,155

*

SeeAlso:
Logical Operators (p. 201)
Conditional Commands (p. 18)

176

INHIBIT AND ALLOW IN JUDGING

Inhibit and Allow in Judging

-inhibit- and -allow- in Judging

The -inhibit- and -allow- commands modify various default behaviors. The tag is a keyword nanfiagetier
to be modified.

inhibit startdraw
inhibit arrow, blanks $$ combined keywords ok

inhibit ~ 3 blank tag; reset defaults
allow $$ blank tag; reset defaults

There may beseveral inhibit- and/or allow- commands in onenit; the resultsare cumulative. Several
keywords may be combined in one tag. The following keywords are available as tags for -inhibit- with respect to
judging (in addition to the inhibit optionsstartdraw, display, update, objdelete, supsubadjust and
degreefor graphics):

anserase $$ do not erase answer comment
arrow $$ do not display the arrow symbol
blanks $$ do not allow blank arrow inputs

When thesdagsare usedvith -allow- all of the"do nots" are changed t8do". The effect of an mnhibit- or
-allow- lasts until it is canceled by one of these actions:

1) a blank-tag -inhibit- or -allow-
2) a specific -inhibit- or -allow- command
3) the beginning of a new main unit

The blank-tag -inhibit- and the blank-tag -allow- have sheeeffect. All of their optionsare changetback to
the default status, as if these commands had been executed:

inhibit blanks
allow anserase, arrow, erase, startdraw, display
allow update, objdelete, supsubadjust, degree

The keywordresetcan be used to reset to the default options:

inhibit reset, arrow $$ set to defaults, then -inhibit arrow-
SeeAlso:
-inhibit- and -allow- in Graphics (p- 65)

inhibit/allow anserase

This command modifies the treatment of response-contivgeting. The keywordanserase("answer-erase")
refers tothe automaticerasure ofcomments, which normally happens when the usedifies her or his
response. The default status is -allow anserase-.

Whenthe user enters a response atamow-,the response ifudged andany processingssociated ith the
matched response (response-contingent commands) is executed. Typically, this is a comment, such as "No. You

177

MOUSE & KEYSET INTERACTIONS

multiplied instead of adding." Asoon as the user starts to modify her/his response, therelgisbnse-
contingent writing is automatically erased. The -inhibit anserase- prevents this automatic erasure.

Example:
unit xXanserase
at 50,50
write How many stars
on the U.S. flag?
arrow 50,100; 200,120
inhibit anserase
answer fifty
ansv 50
no
write The number of stars is the same
as the number of states.
endarrow
*
SeeAlso:
Overview of Word & Number Input (A.58)
arrow Soliciting a Response (p. 159)
eraseu Erasing after a Response {{7.5)

inhibit/allow arrow

This command modifies the -arrow- display. The keywardw refers to the pointy ("arrow") symbdisplayed
by the -arrow- command to indicate to the user that a respomeguised.The 4inhibit arrow- prevents display
of the arrow symbol. It does not affect the operation of #in®w- command;only the symbol isaffected. The
default status is -allow arrow-.

Example:
In this example, the normal arrow symbol is suppressed and instead a question displayed athe position

wherethe arrow would haveappearedThe arrow- commandallows space forits symbol and ablank space
before the user's typing appears. Thus, the -at- and the -arrow- are positioned at the same place.

unit xInhibitArrow
at 100,75
write Please tell me your name.
at 100,100 $$ position of "?"
write ?
inhibit arrow $$don't display ">"
arrow 100,100
specs nookno $$ suppress the "ok"
ok

write Thank you.
endarrow

*

178

INHIBIT AND ALLOW IN JUDGING

inhibit/allow blanks

This command changes the requirement for user input at an -arrow-. The kéjankslrefers to thareatment
of blank responses from the user. The default status is -inhibit blanks-.

Normally, just pressing ENTER ignored if no responseas beerentered. An-allow blanks- lets theuser
initiate judging even though no response has been entered.

The -allow blanks- is very useful when preparing a series of numegatats, since "blank responsedn be
treated as "do not change the current value."

Example:

In this example, the -compute- tries to evaluate the respmtkeetszreturn. If the systenvariablezjcount
is zero, indicating a blank response, the judgment is always "ok".

If zjcount is greatethanzeroandzreturn is TRUE, theresponse is a numbandthe new value ipassed
back toN(i). If zreturn is FALSE, judgingreachesthe endarrow-without havingfound an"ok," so the
response is automatically "no".

unit xInhibitBlanks
fii $$ index for array
f. N(5) $$ array of 5 values
i; exitflag $$ used to exit from loop
set N:=1,2345 $$ set "current” values
calc exitflag := FALSE $$ "don't exit"
loop $$cycles over and over
do display(;N) $$ show current values
loop i=1,5 $$ get 5 values
do getnumber(i; N(i), exitflag)
outloop exitflag = TRUE $$ user chose "Q"
endloop
endloop
erase 50,200;242,267
at 120,200
write Finished.
*
unit getnumber(k; value, flag)
i k $$ index of array
f: value, temp
i: flag 3 exit flag
at 186,76
arrow 175,90+15k; 250,120+15k
allow blanks
specs nookno
answer [0, Q, quit] $$ "quit"
calc flag := TRUE
ok zjcount =0 $$ blank response
compute temp $$ try to find new value
ok zreturn $ew value ok
calc value := temp
no
at 140,110+15k

179

MOUSE & KEYSET INTERACTIONS

write | don't understand.
endarrow
unit display(;nn)
i: k
f: nn(*) 3 note index is given as *
erase $&lear display
box
at 50,30
write Type the new number or
press ENTER to leave the value unchanged.
at 50,75
write Current Values New Values
loop k:=15 3 show current values
at 100,90+15k
show nn(k)
endloop
at 50,220
write Enter "Q" when you are finished.
SeeAlso:
zreturn The Status Variable (p. 332)
judge Changing the Judgment (p. 182)
Logical Operators (p. 201)

180

Using Arrays(p208)

SPECIALIZED JUDGING COMMANDS

Specialized Judging Commands

exact: Exact Responses

The exact-and exactw- araesponse-judging commands. Thag usedvhen no flexibility isallowed in the
user's response. To match an -exact- or -exactw-, the user's responegattlygnatch the given tag, including
spaces and punctuation marks.

exact 3A427/9/5 abc
exactw 3a427/9/5 ab

The -exactand exactw- commands daot give any'response markupfeedback. It can beery frustrating to
receive a "no" response with no clue about why it is incorreandst circumstances, theexact-and -exactw-
are too restrictive.

Example:
unit xexact
at 50,50
write Type this string:
Sally sells seeshells at the seashore.
arrow 75,140
exact Sally sells seeshells at the seashore.
endarrow

*

ifmatch: After the Response

The -ifmatch-command provides a way to do special procesaitey a response ijudged but before the

-endarrow- is reached. It is axception to the rule "thendentedcommands after a matchedsponse are
executedandthen executiorimmediatelyproceeds aftethe -endarrow- orreturns to the arrow- for another

attempt." When a response imatched (whether correct amcorrect), theindentedcommandsfollowing that

responseare executedany indentedcommands following the imatch- are executed and only then does

execution return to the -arrow- or continue after the -endarrow-.

ifmatch $$has no tag

The -ifmatch-andthe indentedcommandghat follow it mustcomejust beforethe endarrow-.The ifmatch-
command has no tag. Only one -ifmatch- may appear in an -arrow-/-endarrow- sequence.

Note that an -ok- or a -no- assures #aaryinput is "matched."
Example:

In this example, rather than typing the comment after both the -answer- and the -ansv-, the comentmedis
only once, after the -ifmatch-.

unit xifmatch

at 50,40

write How many states are in the USA?
arrow 50,90

181

MOUSE & KEYSET INTERACTIONS

answer fifty
ansv 50
ifmatch
write Yes! Alaska and Hawaii were
the last two states admitted.
endarrow
*
SeeAlso:
jjudge Judge Initializations (p. 175)
iarrow Arrow Initializations (p. 173)
imain Modifying Every Unit (p. 232)

judge: Changing the Judgment

The -judge- command allows the author to chahgejudgment given to a user's response. Thiienient
when the response needs to be subjectembtoe analysibefore a decisiomabout itscorrectness is made. The
system variablgjudged gives the current status of response judging.

judge no
judge unjudge
judge \zreturn\ok\no

The tag of -judge- is &eyword; possiblekeywords are afollows: no, ok, wrongunjudge,exit, ignore, quit,
okquit, noquit, exdent, rejudge

The system wordjudged is set by the response judgingmmandssuch as answer-and wrong-. It can be
modified by the -judge- command. Thgidged system variable has four possible values:

-1 after any response judged "ok"

0 after any response judged "wrong"

1 after any response judged "no"

2 when no response has been matched
and neither -endarrow- nor -ifmatch-
has yet been reached

The "no" and "wrong" responses give differejidged valuesbecausesometimes the author must distinguish
betweeranticipatedincorrect responses andanticipatedncorrect responses.

The following four tags for the -judge- command affect only the valzguadfed:

ok sets zjudged = -1
wrong sets zjudged =0
no sets zjudged = 1
unjudge sets zjudged = 2

The following two tagscauseprocessing tastop, setzjudged=2, andreturn to the arrow- towait for further
action from the user:

exit
ignore also erases the user's response

182

SPECIALIZED JUDGING COMMANDS

The next three tagsause an immediate branchttee -ifmatch- command. Commanfidlowing the ifmatch-
are then executed:

quit after the -ifmatch-, continues to the
next command after the -endarrow-
even if the response was not "ok".
zjudged is unchanged

okquit sets zjudged=-1, continues after the
-endarrow-
noquit sets zjudged=1, returns to the -arrow-

after the -ifmatch- is completed and
waits for action from the user

The final two tags setjudged=2, stop processing aésponse-contingent commandsd continue with the
next nonindented command:

exdent
rejudge initializes answer-judging system
variables such as zntries and zanscnt
Examples:
unit xjudge
f: number
at 50,34
write Enter an even number
between 0 and 500.
arrow 70,84
compute number
if not(zreturn)
write | do not understand.
Please enter a number.
. judge no
elseif number >500
write Your number is too big.
. judge no
elseif number <0
write Your number is too small.
. judge no
elseif frac(number/2) =0
write That is not an even number.
. judge wrong
else
write Good!
. judge ok
endif
endarrow
SeeAlso:

Judging System Variables (p. 330)
Basic Judging Commands (}59)
Conditional Commands (p. 18)

183

MOUSE & KEYSET INTERACTIONS

Typing Non-English Text

To enter the following non-Englistharactergress the "compose"” key (currentgommand-= orMacintosh,
andCTRL-z on Windows and Unix), followed by the two-charactercomposesequenceYour machine may
alreadyprovide additionalvays to type some of thesharactersNote that some of thesdaractersare not
available on a Macintosh unless the special "ISO" fonts distributed with cT are installed.

code compose

160 sp sp No-Break Space No-Break Space

161 ! Inverted ! Capital Upsilon

162 c/ Censign Long apostrophe

163 L- Pound sign Less than or equal, <=
164 XO Currency sign Slash

165 Y- Yen sign Infinity

166 || Broken bar Script f

167 SO Section sign Club suit in cards
168 " Dieresis Diamond suit in cards
169 co Copyright sign Heart suit in cards

170 a_ Fem. ordinal (Span.) Spade suit in cards

171 << Left angle quotation Two-ended hor. arrow
172 -, NOT sign Left arrow

173 -- Soft hyphen Uprrow

174 RO Registered tradmark Right arrow

175 ~ Macron Down arrow

176 o~ Ring above deee sign

177 +- Plus-minus sign Plus-minus sign

178 2» Superscript two Right quote marks
179 3» Superscript three Greater than or equal, >=
180 " Acute accent Multiplication sign

181 /u Micro sign Proportional to

182 P! Paragraph sign Partial derivative

183 ~» Middle dot Bullet

184 Cedilla Quotient sign

185 1~ Superscript one Not equal, <>

186 o_ Masc. ordinal (Span.) Equivalent; triple ecpigth
187 >> Right angle quotation Approximately equal
188 14 Fraction one quarter

189 12 Fraction one half |

190 34 Fraction three quarters Loimgrizontal bar

191 7?7 Inverted question mark Enter; vertical bar + left arrow
192 A A +grave accent Aleph

193 A A +acute accent Hebrew math

194 A° A + circumflex accent Hebrew math

195 A~ A + tilde Hebrew math

196 A" A + dieresis Multiply in a circle

197 Ax A + aring above Add in a circle

198 AE AE O with slash through it
199 C, C + cedilla Intersection; upside-down U
200 E° E + gravaccent Union; U

201 FE' E +acute accent Contains

184

regular font

zsymbol font

202
203
204
205
206
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252

E"

o"
XX
o/
U
U
un
u"
v

SS

E + circumflex accent
E + dieresis

| +grave accent

| +acute accent

| + circumflex accent
| + dieresis

ETH (Icelandic)

N + tilde

O +grave accent
O +acute accent

O + circumflex accent
O + tilde

O + dieresis
Multiplication sign
O + oblique stroke
U +grave accent

U +acute accent

U + circumflex

U + dieresis

Y +acute accent
THORN (Icelandic)
German ss

a #grave accent

a Hacute accent

a + circumflex accent
a + tilde

a + dieresis

a + aring above

ae

¢ +cedilla

e #grave accent

e Hacute accent

e + circumflex accent
e + dieresis

i + graveaccent

i +acute accent

i + circumflex accent

i + dieresis

eth (Icelandic)

n + tilde

0 +grave accent

0 4acute accent

o + circumflex accent
o + tilde

o + dieresis

Division sign

0 + oblique stroke

u +grave accent

u +acute accent

u + circumflex accent
u + dieresis

SPECIALIZED JUDGING COMMANDS

Contains and equal

Not contained in

Contained in

Contained in and equal
Exists

Noéxists

Angle
Del
Register mark
Copyright
Trademark
Pi or product
Square root
Multiplication dot
Horizontal line with hook
Intersection; upside-down V
Union; V
Hor. two-headed double arrow
Left double arrow
Up double arrow
Right double arrow
Down double arrow

Opettiamond
Left parenthesis
Register mark
Copyright
Trademark
Summatiosigma

Integral sign

185

MOUSE & KEYSET INTERACTIONS

253 vy y +acute accent
254 th thorn (Icelandic)
255 y" y + dieresis

Typing Special Function Keys

Not all keysets provide all the function keys available on large keysets. cT offers a way to compoissitige
keys. First type the composequencécurrently Command-= on ®lacintosh, Control-z on othanachines),
then a semicolon (;), and finally a three-letter code that specifies the key:

fd-DEL Delete forward
bk-TAB KBACKTAB

esc Escape

?7?? Help

fna Function key A

fnb Function key B

fnc Function key C

fnd Function key D

trn Transpose neighboring letters

If- Left (and move selection)

Ife Left and extend selection

rt- Right (and move selection)

rte Right and extend selection

up- Up (and move selection)

upe Up and extend selection

dn- Down (and move selection)

dne Down and extend selection

bl- Beginning of line (and move selection)
ble Beginning of line and extend selection
el- End of line (and move selection)

ele End of line and extend selection

bp- Beginning of page (and move selection)
bpe Beginning of page and extend selection
ep- End of page (and move selection)

epe End of page and extend selection

bf- Beginning of file (and move selection)
bfe Beginning of file and extend selection
bfs Beginning of file and don't change selection
ef- End of file (and move selection)

efe End of file and extend selection

efs End of file and don't change selection
pu- Page up (and move selection)

pue Page up and extend selection

pus Page up and don't change selection
pd- Page down (and move selection)

pde Page down and don't change selection
pds Page down and don't change selection
cut Cut

cpy Copy

pst Paste

und Undo

186

CALCULATION INTRODUCTION
5. Calculations

Calculation Introduction

The following introduction to cT calculations is very importantydu have not written computeprograms
before,and it canusefully be skimmed bgxperiencegrogrammers to seie basic syntax of cfhumerical
calculations.

The most importantconcepts involved in doing calculatioreze defining variables,using variables in
calculations, using variables in repetitive loops, and making decisions based on variables. A variadigois a
of computer memory in which is stored a number, a string of characters, or other information.

The define- commanddeclaresvariables; thais, it reservegegions of computer memory for storing
information and gives those regions names of your choice, so that you can use meaningful mefieres to
to the information stored in those regions.

The calc- commandassigns a value to a variable; thgt this value isstored inthe namedregion of
memory. The value may be calculated from the current contents of other variables.

The doop- command executes the same instructions repeatedly, with changing values of some variables.

The 4if- command lets you conditionally execute some statements for particular values of variables.

Here is a simple example of these three basic concepts in action. Copy this inégitiréingof your program
window (becaus¢he -define-commandmust precedehe first -unit-command)but after the $syntaxleveline.
Then choose "Run from beginning" from the Option meXter running the program, study the comments
below.

* Define "global" variables, accessible to all units:
define integer: Ncows, Nhorses, Nanimals
*
unit xcalcintro
merge,global: $$ refer to "global” variables
integer: index $$ "local" variable

calc Ncows := 3 $$ ":=" means "assign value"
Nhorses ;=5
Nanimals := Ncows+Nhorses $$ 3+5

at 10,10

show Nanimals $$ this variable contains "8"

* Do repetitive loop for index := 1, 2, 3, 10:
loop index := 1, 10
at 10,20+15*index
* Show number with 1 digit before
* the decimal point and 3 after:

showt sqgrt(index),1,3
if index =7 $$ if index equal to 7
write Root of seven
endif
endloop
at 10,200
write Finished the loop.

*

187

CALCULATIONS

The define- command reserves three regions of memory (named "Ncows", "NhaedSNanimals") to hold
integer values, which are negative or positive whole numpdesine float:" is used to definéfloating-point"
variables that can contain fractional values). Tharsecalled'global" variablesbecausehey can be used in all
the units in the program. The first line of the ufithergeglobal:") declareghat this unit will refer to the
global variables created by théefine-command,andthe secondine declares dlocal" variablenamed "index"
that is accessiblenly to this unit. Otherunits in theprogram carrefer tothe global variables, but onlynit
"xcalcintro" canrefer toits local variable "index". The variable definitiorisllowing the -unit-command are
considered to be extensions of the -unit- command, and the command part of the lines is left blank.

The <alc- commandassigns values to the globadriables "Ncows'and "Nhorses", then uses the numbers
stored inthose regions of computer memory dalculatethe sum of the two valueand assign that sum to
"Nanimals". The sum idisplayedwith a show command, which displays a numerical value. (It is
permissible to omit the command name "calc" on successive lines, and this may improve readability.)

The {oop- command lets you do repetitive operations with varying values of variables. In the exampde
the local variable "index" is initially assigned the value 1, and the contents of the lodpdémedstatements
bracketed by thdeop- and endloop- commands) are executed with this value. When the commaehes the
-endloop-,the program goeback tothe top of the loopand "index" is incremented by 1, sthe region of
computer memory referred to by "index" now has the value 2. A chetladle tosee whethethe current value
of "index" is greatethan 10, theending valuespecified onthe -loop- command. Sincéndex" is equal to 2,
which is less than 10, the computer again executes the indented statements.

After 10 times through the loop, "index" is incremented to 11, whidfréaterthan thespecified endingalue,
and the computer proceeds immediately to the statements followingrttilwoep-. Therare additionaforms of
the -loop- command for dealing with other kinds of repetisiteations,andthereare reloop- and outloop-
commands for altering the sequence of operations.

The showt command displays a numerical value in tabular form. In this case, it displays the square root of the
variable "index" with 1 digit before the decimal point and 3 digits after the decimal point.

The 4f- statement inside the loop checks whether the logical expre$sitmx = 7" istrue or not. If it istrue
(that is, if the current value of "index" exqual to7), theindentedstatementdracketed bythe 4f- and endif-
commands are executed; otherwise the bracketed statements are skipped. There is an iffip@mnast lBtween
"index = 7" (alogical expression that is true false)and"index := 7" (assign the numerical value 7 to the
region of computer memory referred to by "index"). Théseif and else optionsprovide additionatontrol,
and the ease command provides an important alternative to the -if- command.

Note the difference between the following two statements:

show Nanimals $$ displays the number "8"
write Nanimals $$ displays the text "Nanimals"

You can mix text and numbers using "embedded" -show- commands:
write There are <|show,Nanimals|> in the field.

Also note the following peculiar-looking assignment statement:
calc N := N+3

This means "get the current value of N, add 3 to it, and store the sunint@mdi." Theeffect is toincrement
N by 3.

188

CALCULATION INTRODUCTION

Global vs. local variables:In a large, complex program it is advisable to Ueeal" variables or "group"
variables (anamedset of globalvariables) whenevauossible, toavoid problems fromdifferent units making
conflicting assignments to the same variables.

This introduction has discussed the most important aspects of cT calculations. Further dgtansdackin the
following sections.

189

CALCULATIONS

Defining Variables

Summary of Variable Definitions

Here is asummary of the forms available faeclaringvariables. Thes¢éags may beusedwith a -define-
command (for global or group variables) or on the lines immediately after a -unit- command (for local variables).

The name of a variable or constant must start with a letter. The rest of the name may contain letters, numbers,
and underscore. Ittannot contain a space. A variable namay be 30characterdong. Variables are case
sensitive: "zip" is distinct from "Zip".

integer: i, j, k $dnteger variables

i: cows, horses 3 can say "integer" or "i"

i: dim1=5, dim2=3 $3 integer constants; dim2 is equivalent to 3
byte: b1, b2, b3 3 byte variables (unsigfez2b5)

b: bytel, byte2 $$an say "byte" or "b"

b: AllOnes = 255 3 a byte constant

b: SAME=2#11111111 $$ 255, but givenkimary

b: Again = 16#ff 3 255, given in hexadecimal

float: a, b, $$ floating-point variables

f: tempX,tempY $$ can say "float" or "f"

f: C = 3*10E5 3 floating-point constant

button: GoOn Stop $$buttons to click

edit: Textl, Speech 3 scrollable text panels

slider: AdjustSpeed $slider or scroll bar

screen: savel, save2 3 save/restore the screen (-get-/-put-)
touch: tregl, tchO 3 touch region

file: fd1, fd2 $$ file descriptors

marker: m1, m2 $$ marker variables

m: name, formula $3 hold strings of characters

arrays may be of any variable type:
i AnArray(50) $$ array; indexed 1-50
f: points(dim1,dim2) 3 2-dimensional array
f: GNP(1960:1980, 5) $3-dimensional array
$3 first index runs from 1960 1880,
$$ second index runs from 1-5

numeric arrays (integer, float, byte) may be dynamically allocated:
i: RData(*,*) $$ two-dimensional dynamic array; use -alloc-

You can define "groups" of variables:
group,myset: $$ define a group of variables (inlEig)

merge,global: $$ use global variables in a unit
merge,myset: $$ use a defined group of variables in a unit

190

DEFINING VARIABLES

"user" and "author" can be used only in the IEU:

user: $$ begin user variables

f: x,y,z $$variables available also to user

author: 3 return to program-only variables
SeeAlso:

define Global Variables and Groups (p- 193)

Basic Calculational Operations @00)

Defining Marker Variable§p. 248)

Types of Variables
The types of cT variables are byte, integer, float, marker, button, edit, slider, screen, touch, and file.
Quick Summary: (more details come later)

Floating-point variables contain values that are not integers, such as 0.00039 or -528h&fange and
accuracy available depend on the particular machineg@using. In cT, if a floating-poinvariable isused or
stored as an integer, the valuedandedto the nearest integer.

There areawo special floating-point values that may tisplayed by ashow- commandINF (infinity) is
displayedwhen a nonzero valueas beerdivided by zero; NAN ("Not A Number") is displayedwhen azero
value is divided by zero, which might also be considered an "indefinite" result.

Integer variables are signed32-bit integers.These variables uskess storagespacethan floating-point
numbers and give much faster execution speed. Integer values range3f?=c!m+231, which is approximately
-2¢109 to +2*1(P.

The value2*10° (two billion) is not such a tge number. If you multiply 2 billion times 2, the result, 4
billion, is too large to fit into an integer. The integer variable overflows and the result is nolengarning

is given when such an overflavecurs.Any calculation thamight result in lage numbers should always be
done with floating-point variables.

Bytesare unsigned 8-bit quantities suitable for storing positive numbers iratige 0 to255. They use only
one-fourth as much space as integer variables.

Constantscontain values that do not chandering the program. Attempting to assign a value to a constant
(such as CONSTANT := 3*x+4*y) gives a compile errbecausdhe value of aonstantcan't changeMany
programmers make a habit of naming constants with all capital letters (i.e., BASE=47). That is not required, but
it is a convenient conventiohere arefour system-definedonstants: TRUE, FALSE, PAndDEG (radians

per degree = 2P1/360).

A marker variable bracketsa string of characters. That is, the marker shows both where the string of interest
starts and where it ends. Another marker can mark a subsection of the same string.

A file descriptor variable is actually a group of variablgékat describe dile. These variables cannot be
manipulated directly; they are modified with commands such as -addfile-, -setffile-, and -reset-.

When file descriptorsare passed tsubroutines, they must hmassed by address. If lacally defined file
descriptor is used taddfile- or setfile-, the file is automaticallglosedupon exit from the unit. Similarly, a
-jump- command closes all files thaere associatedith local file descriptors, leaving activenly those files
associated with global file descriptors.

191

CALCULATIONS

Graphics object@nd screen areas aneferred to bytheir own variable types: edit variables, button
variables, slider variables, screen variables, andtouch variables. Like file variables, they must be
passed by address, and memory associated with local variables of these kinds is releasdat fupantheunit.

It is possible to compare these variables (of the same kind) for equality or inequality.

Arrays of integer, floating, and byte variables can be dynamically allocated with the -alloc- condyaachic
arrays can grow or shrink as needed during execution.

More details about numerical variables and constants:

Floating-point variables, or "realnumbers,"are stored in aomputer in four pieces: the mantissa, the
exponent, the sign of the mantissa (+ or -), and the sign of the power. The value of a nurdbéredfrom
these pieces with some sleight-of-hand, but essentially it is

(signmantissa * fsignpower

Theaccuracyof the number isdetermined bythe number of bitaisedfor the mantissa. Theange of numbers
that can be represented is determined by the numltsofisedfor the power. All cT floating-point variables
and constants use "double precision."

Many moderncomputers use the IEEE (Institute of Electriaatl Electronic Engineersjtandardfor floating-
point numbers. Double precision uses 64 bits for a floating-point number: 51 bits for the mantissa, 11 bits for
the power, and 2 bits for the signs.

Many machines use a 64-bit IEEE format. This givesa@mracy ofabout 16decimaldigits. Therange of
numbers is approximately:

Largest positive: 2 * 1808

Smallest positive: 2 * 1308
Smallest negative: -2 * 1808
Largest negative: -2+ 1398

Floating-point constantsmay be written in so-called "scientific notation" using either E+ on@tation:

2328756 = 2.328756E+5
-.00029 = -2.9e-4

There must not be any spaces in the E format, nor in the # format discussed below.
Integer constantsmay be written in any number base from 2 to 16:
(signbase#number
2#1011 is 11 in binary
5#21 is 11 in base 5
-8#13 is -11 in octal

#b is 11 in hexadecimal

If "base" is omitted, the number is in hexadecimal (base 16). Other commonly used bases are binary (base 2) and
octal (base 8). For these bases there are specialized display commands: -showb-, -showo-, and -showh-.

192

DEFINING VARIABLES

Integer variables are stored in a computer in two pieces: the sign and the number. Thetsigad isthe left-
most bit and is 0 for positive and 1 for negative.

Most modern computers represent negative integers internally wéthaique calledtwo's complement.” In
two's complement, in order to make a negative integer, all of the bits obitlespondingpositive integer are
complemented (1's turn into O's and vice-versa) and then 1 is added to the result. This example &liravg) (in
the representation of -11:

start with+11: 0000 .. 0001011
flip all the bits: 1111 ..1110100
add 1, make -11: 1111 .. 1110101

Integer variables may range from -2147483648 (#80000000) to 2147483647 (#7fffffff).

SeeAlso:
Basic Calculational Operations @00)
Buttons, Dialog Boxes, Sliders, & Edit Panels (p. 142)
get and put Portions of Screen (p- 89)
Files, Serial Port, &ockets (p. 285)

define: Global Variables and Groups

The define-command specifies variables fase internally within the progranvariables for the user of the
program,and constantsVariablesand constantscreated by -define- ithe IEU (initial entry unit)are global
variables that may be used anywhere in the program, and such variablesgadinebexinto groups thatan be
referred to with the "merge" option.

define float: a, b, ¢ 3 floating point; begin global definitions
f: TArray(8,4,7) $$ same as float:
f: Vec(-50:50) $darray index runs from -50 to 50
f: Ka = 23.57 $$ can use Ka just like 23.57
integer: horses, cows 3 integer
i pig, hog $$ same as integer:
byte: bytel, byte2 $$ 8-bit byte
b: B(10,20) $$ same as byte:
file: fd1 3 file descriptor
screen: s1, s2, s3 $8reen area for -get- and -put-
edit: ev $$ an edit panel
button: bv $$ a button to click
slider: sv 3 a slider to adjust
touch: tch $$ a touch region

numeric arrays (integer, float, byte) may be dynamically allocated:
i: RData(*,*) $$ two-dimensional dynamic array; use -alloc-

You can define "groups" of variables:
group,alpha:
i A=1, B=2, C=3 $$ group alpha consists of A, B, C

group,beta:

merge,alpha:
i: Bx, By, Bz$$ beta consists of A, B, C, Bx, By, Bz

193

CALCULATIONS

user: 3 available to users during execution

f:xy,z

author: 3 not available to users; part of global group

f: m1, m2, m3
unit test
* use global variables (including user variables):

merge,global:

merge,alpha: $$ use alpha group variables

i: i, jj, kk $$ local variables used only in unit test
calc jii :=pig+B $$local := global + beta definitions

The define-commandmust appear inthe IEU (initial entryunit precedingthe first -unit- command). "user"
variables must be defined as global variabdes "User Variabledielow. Several variables may Hefined on
one line, but each new variable type must be introduced on a new line. The variable type (suchi@es "fit}
need to be repeated on subsequent lines.

The name of a variable or constant must start with a letter. The rest of the name may contain letters, numbers,
and underscore. Itcannot contain a space. A variable namay be 30characterdong. Variables are case
sensitive: "zip" is distinct from "Zip".

You candefinevariable (or constant) names eutioughthereexist systemvariablesand functions with the
same names. Your definitions override the system definitions. All system variabpgsfaed with "z" so that
you can easily avoid such a conflict. The system-defined constants are TRUE, FALSE, PI, afriddes per
degree = 2PI1/360).

The group and merge options are useful for identifying separate sets of variables for use by separate parts of your
program. Also, yowan have'define group,gamma” in ause-file and refer to itwith a "merge,gamma:" in
your main file. This provides a convenient way to share information between two files.

Whenyou run your program (goerform "Make Binary"), cTfirst compiles the IEU in your maiprogram
(including the global -define-s), then it compiles the IEUs (and global -define-s) of each -use- filegritethie
which you have listed your -use- commands.

A variable defined in a group cannot bsed inthe IEU. If you want to initialize some group variables in the
IEU, use a -do- of a unit that initializes the variables.

You can say "merge,gamma:" in your definitions even if the "group,gamma:" information is present later in the
file, or is in a -use- file. However, your own -define- statements cannot themssflrencedefinitions that are
compiled later. Here is what you can and can't do:

define group,main:
i: One, Two
merge,gamma:
* i: Array(NN) $$ would give compile error; NN not defined yet

group,gamma: $$ could be in -use- file
i: NN=35

unit First

merge,main:
show NN $$ show 35 because "gamma" included in "main"”

194

DEFINING VARIABLES

SeeAlso:
Local Variables (p. 195)
User Variables (p. 198)
Combining Global and Local Variables (p. 196)
Basic Calculational Operations @00)
System Variables (p. 318)
IEU The Initial Entry Unit (p. 227)
use Using Library Files (p. 243)

Local Variables

Local variables are variables that aefinedfor only oneunit. Theformat for specifying local variables is the
same as for a -define- statemenxgepthat "user” variablesannotbe local. Local variablesust beindented
and must follow immediately after the -unit- command line:

unit someunit
merge,diagram: $$ merge in group named "diagram"
f: locall, local2, local3
f: tx, ty, tz

The example above refers to the "diagram" group of variables argixhkxal variables: locall, local2, local3,

tx, ty, and tz. Local variables are usually used when values are passed to a unit. By using local vauialbles, a
can docalculations without disturbing the values of global variables. This is important wheanthas
accessed from many different places.

unit someU2(tx, ty, tz)
f: tx, ty, tz, index1, index2

If the unit needs tohave access tglobal variables (thosdeclaredwithout a group name in alefine- at the
beginning of the program), the local variable declaration must include "merge,global:" as its first line, and it can
also have other merge operations to make reference to group variables in this file or in a -use- file:

unit someU3(myvarl, myvar2)
merge,global: $$ merge global set of definitions
f: myvarl, myvar2, myvar3
merge,gamma: $$ also merge the group named gamma

Everytime a unit isexecutedwith a do- anew set of local variables isreated.These local variables are
maintained until the entirenit is finished, genthough other units (with their own locahriables)are do-ne
along the way. This makes it possible to do recursive problems.

NOTE: The localvariable definitionsare part of the -unit-commandihey are"continuedlines" of the -unit-
command. Therenust notbe any other lines of code until after the local defines are finished.

Examples:

In this example, théigure is drawn atthreedifferent positions withthreedifferent vectorlengths. Thescreen
position and vector length apassedo unitxfigure asargumentsn each of the three -do- commands.

unit xlocall

do xfigure(50,100, 50)
do xfigure(200,100, 100)
do xfigure(75,220, 70)

195

CALCULATIONS

*

unit xfigure(tx, ty, tlength)
f: tx, ty, tlength, angle

rorigin tx, ty

rat 0,0

rcircle tlength

loop angle := 0, 315, 45
rotate angle
rvector 0,0; tlength,0

endloop

rotate 0

The next example shows an interestd@signcreatedthrough "recursion,” @echnique inwhich a subroutine
calls itself. In this case, note how unit FractArrow calls itself.

unit fractals $Fecursion example
do FractArrow(175,50, 1, 0, 0)
unit FractArrow(rx, ry, scale, rotate, depth)
f: scale, rotate
i rx, ry, depth
i maxdepth = 8 $$ maximum depth
i: angle =70 $$ try 30 < angle < 140
i- length = 100 $$ length of first line
f: ff = .65 3 scale reduction factor
outunit maxdepth < depth 3 exit condition
at rx, ry $$ set screen position
rorigin 3 origin at current screen position
size scale
rotate rotate
rdraw ;0,length 3 draw from current position
calc rx :=zwherex 3 save current screen x
ry := zwherey 3 save current screen'y
do FractArrow (rx ,ry, ff*scale, rotate+angle, depth+1)
do FractArrow (rx ,ry, ff*scale, rotate-angle, depth+1)
SeeAlso:
define Global Variables and Groups (p- 193)
Combining Global and Local Variables (p. 196)
do Calling a Subroutine (p. 224)

Combining Global and Local Variables

The "merge,global:keyword is usedvith local variable definitions to combinangroupedglobal variables
(both authorand user) with local variables. The "merge,global:" musppear onthe first line after aunit
command and must be indented. You can also merge named groups as well:

define i:G1, G2
group,one:
i: ONE=1
group,two:
i: TWO=2

196

DEFINING VARIABLES

unit zZip
merge,global: $$ must be on first line after -unit-
f: templ, temp2
merge,two: 3 can refer to TWO but not to ONE

There are four possible situations in a program with respect to variables:

1) no variables at all

2) global variables only

3) local variables only

4) both global and local variables

In case 1, there are no variables and thus no need for rules of precedence.

In case 2the global variablegspecifiedwith a -define- statement)are available everywhere inthe program.
Those variables specified as "user" variables are available both to the user and to the program.

In case 3the local variablesire availablewithin each individualunit, butthere is nocarry-over of variables
from one unit to another. Local variables can, however, be passed from one amither eithewith pass-by-
value or pass-by-address:

unit one
f.a,b,c
do two(a, 9; b)
unit two(tl, t2; t3)
f: 11, t2, t3

In case 4, the global variables are available everywhere in the program unless local variables epezifiedn
In a unit that specifies local variables, only the logaiablesare available, unless group variablaee merged.
Sometimes it is desirable to use both global and local variablesn&hge,global: option explicitly allows
both global and local variables to be active in the same unit.

define f:xy, 2z
*
unit start
* the global variables x, y, and z are available
*
unit later
f:x,y,z
* the local variables x, y, and z are available
* they haveno relationshipto the global x, vy, z
*
unit combine
merge,global:
f:a, b, c
* the global X, y, and z are available
* the local a, b, and ¢ are available

*

Note that localvariables mayhavethe same names as global variablésthere is nomerge,global.
However, this is not good programming practice!

197

CALCULATIONS

SeeAlso:
define Global Variables and Groups (p- 193)

User Variables

Ordinarily, when the user enters a response ("heat the mixture"), it is treated as a phezspienee ofetters.

If the user enters an algebraic expression ("x+4"), the program must be given special instructions so that the "x"
is treated as a variable instead of simply as a letter in a phraseugdwe""keyword is used t@pecify that the
variablesthat follow in the eefine-statementre available to the usearfd to the program). Theauthor:"

keyword specifies that the variables that follow it are available only to the program.

define user: 3 specifies "user" variable
f: x,y $$ available to user & author
author: 3 stop defining "user" variables
f.z $$ available only to author

The only commandghat treat "user'variables speciallyare €ompute-, -ansv-and wrongv-. They use the
"user" definitions made in the same file.

The "user:"and "author:" optionsrefer only to the ungroupedglobal variablesand cannot beused in the
definition of anamedgroup of variables. However, the "user:" definitiara® bemade interms of avariable
group, which provides a way to share access to user varisimeitarly, if definitions of constantare used in
both the "author" and "user" defines, the constant must be merged from a separate group, like this:

define group,length:
i: NN

author: 3 the author global defines
merge,length:
f: ax(NN)

user: 3 the user global defines
merge,length:
f: ux(NN)

unit testing
merge,global: $$ merges both author and user defines

Example:

define user: $$ inEU, before the first -unit- command
f:x,y

unit xUserVariables
merge,global:
f.z

calc Xx:=5
y.=7

at 50,30

write

< x
I on
~ o

198

arrow
compute
ok

no

endarrow

*

SeeAlso:
ansv
compute
compute

Type an expression using x and y.
100,120; 500,300

z
zreturn
write Your expression evaluates
to <|s, z|>. $$ embedded -show-
write Sorry, | don't understand.

Numerical Responses (p. 163)
Storing and Evaluating Inputs 1p5)
Computing with Marker Variables @b4)

Algebraic Responses (p67)

specs Specifying Special Options (p. 169)
Plot Two User Functions Simultaneously (p. 281)
Plotting Parametric Equations (p. 282)

DEFINING VARIABLES

199

CALCULATIONS
Basic Calculational Operations

calc: Assigning a Value to a Variable

The -calc- command is used to assign a value to a varkbleariablesmust have been previoushdefine-d,
either in the -define- set at the beginning of the program or as local variables within a unit.

calc result := x"2 + sin(x) + 7

The assignment symbol is ":=". Only one assignment may be made per line, unless the assignments cascade:
calc y:=x:=z:=0 $%his isokay
calc y:=5; x:=11 $this is NOTokay

You may use "scientific notation" with eithapper- or lowercase EThe statement "x becomds2837 times
1013 is written:

calc X :=4.2837E+15

You may use parentheses (), braces {}, or brackets [] to enclose pieces of an expressionmuaippédation
is allowed except where two variables are involved.

calc x :=3(alpha + 7beta) $$ this akay
calc x :={alpha+beta}[3y+7]
calc X :=alphabeta 3 this is Nkay

Whenthe program isexecuted, thaiseris permitted to use impliechultiplication of "user" variablegcreated
with the -define- command) when processed by -compute- or -ansv-. Also see "User Variables".

SeeAlso:
Defining Variables (p190)
System Variables (p. 318)
calc Simple Marker Calculations (p. 249)
compute Computing with Marker Variables @n4)
compute Storing and Evaluating Inputs 1p5)
ansv Numerical Responses (p. 163)
User Variables (p. 198)

Arithmetic Operators
The symbols used for simple arithmetic operations are
+-*and/
Exponentiation may be expressed with a cadrpof with two asterisks*t):
XY is XMy orx**y
The $divt$ and$divr$ operators perform integelivision, either truncating orounding theresult. Integer

division is much faster than the "floating division." T$tandarddivision operator ("/") always means floating
division, even if the quantities must be converted (internally) into floating-point format.

200

BASIC CALCULATIONAL OPERATIONS

11 $divt$ 4 is 2
11 $divr$ 4 is 3
11/4 is2.75

Integer, floating-point, and byte variables may be mixed in expressions. For exampperiedsly legal to add
"f+i+b", in which case the integer and byte variables are changed (internally) to floating-point vdriibiesa
floating addition is performed.

SeeAlso:
Defining Variables (p190)
Logical Operators (p. 201)

Logical Operators

The following logical operations are available, as well as the system-defined constants TRUE and FALSE:

= equal

~= not equal (or !=)
<> " "

<= less than or equal
=< " " " "

>= greater than or equal
=> " " " "
~A inverse of A

not(A) " "

& logical intersection
and " "

| logical union

or " "

Logical operations, or boolean operations, involve comparisonatbaither "true" or "false". For example,
the expression "a>b" means "agseaterthan b". That statement isither true or false. The expression
"A<B<C" is treated as though it were written "(A<B) & (B<C)" and is true only if A is less thandB is less
than C.

With markers (strings of characters), comparisons such as "greater than" (>) are terms of alphabetic order, so that
"z" is greater than (comes after) "a", and "a" is greater than (comes after) "Z".

With edit, button, slider, and screen variables, the only legal comparisons are equal or not equal.

An -if- statement always expects a logical expression:

if a>b

write a isgreater than b
else

write a isnot greater than b
endif

Commands (such as -if-, -reloop-, -ok-) that require true/false expressions in theegagsall negativevalues
(after rounding to an integer) as "true" and all positive values as "false.”

A "true" expression evaluates to ahd a'false" expression evaluates to 0. These values maysée in
calculations. The system-defined constants TRUE and FALSE may also be used in calculations:

201

CALCULATIONS

X ;= 14*(a<b)
status .= TRUE

The variable "x" becomes either -14 (a is less than b) or 0. The variable "status" is -1.
In expressions involving & (and) and | (or), Heeondpart of the expression isvaluatedonly if the first
part has not determined the truth of the statement. For example, éxgtression "X & Y", if X is false, the
entire expression is false, and Y is not evaluated. Similarly, in X | Y, there is no need to evaluate Y if X is true.
Here is an example of the advantage of this treatment:
define f: X,Y(10)
if X<1]Y(X)

If X is zero, evaluating Y(0) would give an execution error. The pofimckfor X<1 prevents the evaluation of
Y.

In order to compensate for roundoff errors, cT uses a "fuzzy zero." When making logical comparisons, X = Y if
abs((X-Y)/X) <1011, or if abs(X-Y)<109.

SeeAlso:

Defining Variables (p190)
Arithmetic Operators (200)

Trigonometric Functions

These trigonometric functions are available:

sin csc arcsin arccsc sinh
cos sec arccos arcsec cosh
tan cot arctan arccot tanh

The arguments of the trigonometric functioa® given in radians. The resultsreturned from the inverse
trigonometric functions are also in radians. (Angles used with the -rotate- and -polar- coranearmatmally in
degrees, but you can udahibit degree to change taising radians, for consistenayith the trigonometric
functions.) The functionsinh, cosh tanh are hyperbolic sine, cosine, atahgent.

Thearctan function has two formats. Whehere is oneargument,arctan(p)returns theradianmeasure of the

angle whose tangent is "p". The anglasgefrom -Pl/2 to+PIl/2. When therearetwo argumentsarctan(p,q)
returns the radian measure of the angle whose tangent is "p/q". The angles range from -Pl to +PI.

The system-defined constant DEG (radians per degresgfsi for convertinglegreesnto radians: cos(60DEG)
is 1/2, and arctan(1)/DEG is 45.

Pl = 3.14159.....
DEG = 2PI/360 (the radian measure of one degree)

Example

This example showarctangentvalues for the two formats adrctan. Notice how two consecutivevrite-
statements are used to make one line of display. Then the embedded carriage return prepares for the next line.

202

unit xarctan $&how arctan values

at 40,50

write Arctan(X)<|tab|>Radians<|tab|>Degrees

at 40,70

do atans1(100) $$ 1st quadrant

do atans1(1) $$ 1st quadrant

do atans1(-1) $$ 4th quadrant

do atans1(-100) $$ 4th quadrant

at 40,150

do atans2(-1,-1) $3rd quadrant

do atans2(-1,1) $$ 4th quadrant

do atans2(1, 1) $$st quadrant

do atans2(1, -1) $3nd quadrant

unit atans1(q) $$ange: -P1/2 to PI/2
f.q

write <|t, q, 4|><|t,arctan(q) ,6,3|>

write <|t,arctan(q)/DEG ,6,3|><|cr|>

unit atans2(q,r) $$ange: -PI to +PI
f.q,r

write <|t,q, 2|>,<|t,r,2|><|t,arctan(q,r), 6,3|>

write <|t,arctan(q,r)/DEG, 6,3|><|cr|>

SeeAlso:
Other Mathematical Functions (p. 203)

inhibit/allow degree (p. 70)

Other Mathematical Functions

These mathematical functions are available:

abs(x) absolute value of x

frac(x) fractional part of x

int(x) integer part of x

round(x) integer part of (x+0.5)

sign(x) -1, 0, or +1 for x<0, x=0, x>0

mod(X,y) modulo function (remainder of x/y)
comp(n) bit complement
bitcnt(n) number of bits set in n

BASIC CALCULATIONAL OPERATIONS

The functiondnt andfrac are defined so that int(x)+frac(x) = x. Note the behavior ot fracwith negative

numbers:int(-3.7) is -3;frac(-3.7) is 0.7.

Themod function is defined as mod(x,y) = y*frac(x/y)

log(x) logarithm of x (base 10)
In(x) logarithm of x (base e)
sqrt(x) square root of x

alog(x) 1K

exp(X) &

factorial(x) (X)(x-1)(x-2)....(1)

203

CALCULATIONS

combin(x,y) factorial(x)/[factorial(y)*factorial(x-y)]
gamma(n)

For positive integer values of n, the functigamma(n)is equivalent tdactorial(n-1).
System-defined constants are written in capital letters:

TRUE =-1

FALSE =0

Pl = 3.14159.....

DEG = PI/180 (the radian measure of one degree)
SeeAlso:

Trigonometric Functions (p. 202)
Bit Manipulations (p. 206)

The Keyname Function: zk()
The zk() function gives the numeric value of a character or other input.
zk(keynamg

Thekeynaméor the zk() function may be any alphanumenhbaracteisuch aszk(B) or zk(7), or any ofthese
keywords:

back cr
erase ext
next space
tab timeup

touch (and touch variants)

copy cut paste undo
escape help transpose
fa fb fc o]

left_arrow left_arrow_extend
right_arrow right_arrow_extend
up_arrow up_arrow_extend
down_arrow down_arrow_extend

begin_line begin_line_extend
end_line end_line_extend
begin_page begin_page_extend
end_page end _page extend

begin_file begin_file_extend begin_file_scroll
end_file end_file_extend end_file_scroll
page_up page_up_extend page_up_scroll

page_down page_down_extend page_down_scroll
tab_back erase fwd

The touch variants are covered in "pause Mouse Inputs".

204

BASIC CALCULATIONAL OPERATIONS

The system functiozks() generates a charactring corresponding to a numerkey value. For example,
zks(zk(next)) on a Macintosh generates the character string "return” and on a PC generates "entts(he
function provides a machine-independent way to display on the screen the name of the keythat kbgsiser
would press in order to achieve a particular effect.

Macintosh keyboard mappings are

copy, cut, paste,undo: edit menus or key equivalents of menus or function key equivalents
escape: esc

help: help

transpose: control t

fa, b, fc, fd: f5, 16, 7, 18

left_arrow, (left_arrow_extend): leftarrow, (shift leftarrow)
right_arrow, (right_arrow_extend): rightarrow, (shift rightarrow)
up_arrow,(up_arrow_extend): uparrow, (shift uparrow)
down_arrow, (down_arrow_extend): downarrow, (shift downarrow)

begin_line, (begin_line_extend): cmd leftarrow, (cmd-shift leftarrow)
end_line, (end_line_extend): cmd rightarrow, (cmd-shift rightarrow)
begin_page,(begin_page_extend): cmd uparrow, (cmd-shift uparrow)
end_page,(end_page_extend): cmd downarrow, (cmd-shift downarrow)
begin_file, (begin_file_extend): cmd home, (cmd-shift home)
begin_file_scroll: home

end file, (end_file_extend): cmd end, (cmd-shift end)

end_file_scroll: end

page_up, (page_up_extend): cmd pageup, (shift-cmd pageup)
page_up_scroll: pageup

page_down, (page_down_extend): cmd pagedown, (shift-cmd pagedown)
page_down_scroll: pagedown

tab_back: cmd tab

erase_fwd: del

Windows keyboard mappings are

copy: control ¢ or shift insert
cut: control x or shift del
paste: control v or insert

?? undo: control u

escape: escape

help: f1

transpose: control t

fa, b, fc, fd: f5, 16, 7, 18

left_arrow, (left_arrow_extend): leftarrow, (shift leftarrow)
right_arrow, (right_arrow_extend): rightarrow, (shift rightarrow)
up_arrow, (up_arrow_extend): uparrow, (shift uparrow)
down_arrow, (down_arrow_extend): downarrow, (shift downarrow)

begin_line, (begin_line_extend): home, (shift home)

end_line, (end_line_extend): end, (shift end)
begin_page,(begin_page_extend): ctrl home, (shift-ctrl pageup)
end_page, (end_page_extend): ctrl end, (shift-ctrl end)

?? begin_file, (begin_file_extend): ctrl home, (shift-ctrl home)

205

CALCULATIONS

end_file, (end_file_extend): ctrl end, (shift-ctrl end)

page_up, (page_up_extend): pageup, (shift pageup)
page_down, (page_down_extend): pagedown, (shift pagedown)
tab_back: shift tab

erase_fwd: delete

On any machine the function keys can be composed. This allows all the function keyactedsed@ven on a
machine that doesn't have the physical keys we expect. See "Typing Special Function Keys".

Example:
unit xzk
loop
at 50,50
write Press the TAB button or the spacebar.
pause
erase
at 100,100
if zkey = zk(tab) | zkey = zk(space)
write \zkey=zk(tab)
\You pressed TAB!
\Spacebar pressed.
outloop
else
write You typed <|s,zks(zkey)|>.
Please press TAB or Spacebar
endif
endloop
at 10,250
write After the -endloop-.
SeeAlso:
pause Single Key & Timed Pause (p. 125)
pause Mouse Inputs (p. 126)
Typing Special Function Keys (p. 184)

Bit Manipulations

Bit manipulation operations allow the manipulationimdividual bits within a variableThese operations may
be used with byte variables and integer variables.

c Ish N 3 left shift c by N positions
c rsh N $3% right shift c by Nositions

m $mask$ n $$ bit-wis&and"
m $union$ n $$ bit-wise "or"
m $diffs n $$ bit-wise "exclusive or"

comp(c) $$ bit complement of ¢
bitcnt(c) $$ count number of 1's bits in ¢

206

BASIC CALCULATIONAL OPERATIONS

All bit manipulationsaredefined interms of the binary expression of a number. Moving one positieans
moving onebinary position.

Left shift moves every bit one position to the lefhe right-handbits become zer@ndany ones at théeft
are "pushed off" the end.

Right shift moves every bit one position to the right. The right shift operation (rsh) is lcdefelgd. On
some machines the left-most ("sign") bit is extended (copied) into neighboring posltiang the shift, while
on other machines this bit may not d&@g¢endedBits shifted offthe rightend arediscarded inany caseThis
loose definition corresponds to the definition of right shift operations in the C language.
In m $mask$ n every bit that is 1 ilhothm and n becomes 1. All other bits become 0.

In m $union$ n, everybit that is 1 ineitherm or n becomes 1. The resultirgjt is 0 only if the
corresponding bits in botim andn are 0.

In m $diff$ n, the resultant bit is 1 ithe correspondingits in m andn are differenti.e., one is land the
other is 0). If the corresponding bits are the same (both 1 or both 0), the resultant bit is 0.

Thecomp function changes every 1 bit of the named variable into 0, and every 0 bit into 1.
Thebitcnt function counts the number of 1 bits in the named variable.

NOTE: All arithmetic operations on integer and byte variables are carried out to 32-bit preeiganf some
of the data are read from or stored into byte variables.

Example:

Internally, the left shift operation isarriedout with 32 bits of working storage. If one of these 32-bit
intermediate results is stored into a byte variable, only the lowest &rbisaived.All 32 bits can be obtained
by storing the result into an integer.

The bytevariable B can holdnly 8 bits, with numerical valuedetween Oand 255. The left shift by 4
neverthelesproduces a largatumber (1600|andstores thatargernumber in the integevariable N. If it is
stored into the byte variable C, only the right-most 8 bits are kept. The other bits are simply lost.

unit xbits1
b:B, C
i N
calc B :=100
C:=B %Ish$ 4 $$ same as B*16
N := B Ish 4
at 50,50
write <|t,B,4|> <|b,B,16|><|cr|>

<t,C,4]> <|b,C,16|>
<[t,N,4> <|b,N,16|>

SeeAlso:
Other Mathematical Functions (p. 203)
Types of Variables (A91)
Defining Variables (p190)

207

CALCULATIONS
Array Operations

Using Arrays

Here is asimple example of how talefine anduse an array, irthis case an arrayhat will contain 31
temperatures for each day of a month:

unit xarray
float: Temp(31) $$ one-dimensional array, 31 elements
calc Temp(12) := 47.3 $$ 47.3 degrees on the 12th day

Arrays may becomposed ofiny type of variable. They may be multidimensioraid the lengths of byte,
integer, or floatarrays can be dynamically allocatedth the alloc- command. The functiomlength(array)
returns the total number of elements inagray. Here is avariety of definitions of oneand multi-dimensional
arrays:

define f:A(5), B(2,3), C(10:15)

i: D1=2, D2=3, D3=5
$$ array lengths in terms of defined constants:
b: MultiDim(D1,D2,D3)

m: MyMarker(10)
file: DataFiles(4)
touch: Regions(5,3)

3 first index is 1960, 1961, 1962:
i: S(1960:1962, 5)

$$ 1st index is -10, -9, -8; 2nd is -5 to 5:
f: T(-10:-8, -5:5)

i: Dyn(*,*) $$ integer array dynamically allocated with -alloc-

The array "A" has five elements: A(1), A(2), A(3), A(4), A(5). Tareay "B" has 6 elements. larder,they are
B(1,1), B(1,2), B(1,3), B(2,1), B(2,2), B(2,3).

The defined constants, D1, D2, and D3, are used to specify the dimensions of "MultiDim".

Unless otherwise specified, array indices start at 1. Arrays can be defined isatstart at 1 by specifying the
starting and ending indices separated by a colon. An array defined as "f: Z(k:m) starts wéthdZ(k)s through
Z(m). It has (m-k+1) elements. The array "C" has 6 elements: C(10), C(11), . .. C(15).

In the array "S", the first index runs from 1960 to 1962 and the second index runs, in the usual fashion, from 1
to 5. An array may not have a negative length, but if start and end are giwrgyanan haveegative indices,
as in the array "T".

When a whole array is passed to a subroutine, it must be passed by address (an individual element of an array can
be passed byalue). That is, théocation of thearray is passedand not the valuescontained bythe array.

Individual elementof an array can be passed by valugpdss-by-address, a changade tothe named variable

by the called unit (the -do- unit) is a change to the original variable.

208

ARRAY OPERATIONS

When a whole array is passed to a unit, only the name @frthg isgiven. That is, ndandex(es) are specified.
The calledunit musthave alocally definedarraywhoseindex(es) are specifiedith asterisks (*). Theasterisk
tells the unit that it must set the length of the array dynamically when the array arrives.

You can also define basic arrays to be dynamically allocated, such as Dyn(*,*) in the example alpoeserft
only numeric arrays can be defined in this way (integer, float, and byte@aghdndexmust start at 1. See the
-alloc- command for how to use such arrays.

You canuse the zero- command to zero amtirearray inone operationand a block- command taransfer
entire arrays or portions of them from one array to another (or within the same array).

Example:

This example fills an array using -set-. The values inatih@y aredisplayed.Then three values dhe array are
changed by unit zonk, and finally the values are displayed again.

unit xarray
i: myarray(3,5) 3 15-element array

set myarray := 1,2,3,4,5, $$ fill row 1
21,22,23,24,25, $tl second row
31,32,33,34,35 3 fill third row

do showit(0; myarray) 3 display array

do zonk(2,1 ; myarray) $$ modify array

do showit(100; myarray) 3 display array again

unit zonk(p,q ; temp) $$ modify values in array
iip,q $3 get first element to change
i: temp(*,*) $$receive passed array

set temp(p,q) := 2001, 2002, 2003 3 3 elements changed

at 30,90

write Array values changed starting at (<|s,p|>,<|s,d/|>):

unit showit(ty; temp) $$ display the array
ir ty $$ display offset in y-direction

i, j 3 size of array
i: temp(*,*) $$local array

loop i=13 $Hdisplay each row
loop j==15 $%each element of row
at 40%, ty+15%i
showt temp(i,j), 4, 0
endloop
endloop
SeeAlso:
Defining Variables (p190)
set Assigning Values to an Array (p. 210)
block Block Transfer (p. 212)
zero Initializing Arrays (p. 211)
do Calling a Subroutine (p. 224)
alloc Allocating Dynamic Arrays (p. 212)

209

CALCULATIONS

set: Assigning Values to an Array

The -set-command provides a quick way #&ssign values tdndividual elements of an array. When the
assignments start with the first value of the array, only the array name needs to be specified.

define f:a(10),b(10)

f: T(1960:1962, 2)
marker: names(3)

set a:=1,35,2,004,6,9,0

set b :=10,20,30,40,50,60,

70,80,90,100 $$ can be continued on next line
set T(1961,1) := 37, 82
set names := "Sally", "Joe", "Beth"

The first -set- above is equivalent to:

calc a(l):=1
a2):=3
a3):=5
a(10):=0

The -set- is not required to start with the first element of the array. It magdaketofill some small portion of
a large array. The second example above is equivalent to

calc T(1961,1) := 37
T(1961,2) := 82

If the -set- command specifies more elements than are contained in the array, it will generate an error.

You canuse the zero- command to zero amtirearray inone operationand a block- command tdransfer
entire arrays or portions of them from one array to another (or within the same array).

Example:
unit xset
i: M(8), index
set M:=5,12,7,3,4,22,1,2
at 50,50
loop index :=1, 8
at 50, 18*index
write M(<|s,index|>) is <|s,M(index)|>
endloop
*
SeeAlso:
Defining Variables (p190)
Using Arrays (p208)
block Block Transfer (p- 212)
zero Initializing Arrays (p. 211)
alloc Allocating Dynamic Arrays (p- 212)

210

zero: Initializing Arrays

ARRAY OPERATIONS

The -zero- command sets some or all of the elements of an array to zero (or zempty in the case of markers).

define

Zero
Zero
Zero
Zero

i:A(5,3)
m: names(12)

A $$zero entire array

A4 $$zero first 4 elements
A(4,1),3 $$ zero 3 elements from A(4,1)
names $&et all markers to zempty

The simplest form of the -zero- command, with only one tag, namasayn Every element dhe array is set

to zero.

The two-tag zero- has two variants. Theecondargument is always an expression teabluates to some
number,N. If the first tag names an array as the first argument, theNirstements of tharray are zeroed. If
the first argument of the tag is afementof an arraythenN elementsare zeroedstarting with thenamed

element.

A related command is the -block- command, which you can use to transfer entire arrays or portiongrafithem
one array to another (or within the same array).

Example:
unit xzero0
i A(5,3), 1,]
set A :=1,35,7,9,11,13,15,2,4,6,8,10,12,14
at 50,40
loop i:=15
loop j =13
write <|t,A(i, j), 3|><[cr|>
endloop
endloop
zero A4 $$zero first 4 elements
zero A(4,2),3 3 zero 3 elements from A(4,2)
at 100,40
loop i:=15
loop j =13
write <|t,A(i, j), 3|><[cr|>
endloop
endloop
*
SeeAlso:
Defining Variables (p190)
Using Arrays(p208)
set Assigning Values to an Array (p. 210)
block Block Transfer (p- 212)
alloc Allocating Dynamic Arrays (p- 212)

211

CALCULATIONS

block: Block Transfer

The -block- command lets you transfer a block of variables from one place to another, without having to write a
loop to do it:

block A, B $$ move A(1) to B(1), A(2) to B(2), etc.
block A B, 3 $$ move only the first 3 elements of A
block A(3), B(7), 2$3$ move A(3) to B(7), A(4) to B(8)

An execution error occurs if the receiving array is too short to hold all the transferred values.

A related command is the -zero- command, which you can use to set araeagirer aportion of thearray to
zero.

Example:
unit xblock
i: A(2,5), B(2,7)
set A:=1,2 34,5, 11, 22, 33, 44, 55
set B := 10, 20, 30, 40, 50, 60, 70,
100, 200, 300, 400, 500, 600, 700
at 10,20
show B(2,1) $$ displays the value "100"
block A(2,1), B(1,7), 5
at 10,50
show B(2,1) $$ displays the value "22"
SeeAlso:
Defining Variables (p190)
Using Arrays(p208)
set Assigning Values to an Array (p. 210)
zero Initializing Arrays (p. 211)
alloc Allocating Dynamic Arrays (p- 212)

alloc: Allocating Dynamic Arrays

The -alloc- command lets you lengthen or shorten dynamic arrays, whiokeml@hen you don't knovexactly
how large the arrays may have to be:

unit test
i: D(*,*) $$ dynamic array (integer, float, or byte)
alloc D(5,3) $$allocate 5*3 = 15 elements
calc D(4,2) := 402
at 10,20
write <|s,D(4,2)|>; <|s,zlength(D)|> elements
alloc D(8,10) $%extend to 8*10 = 80 elements
at 10,50
* D(4,2) is unchanged:
write <|s,D(4,2)|>; <|s,zlength(D)|> elements

Currently, dynamic arrays are available only for numerical values (integer, float, byte), and eachustistart

at 1. When alynamic array idengthened, the original elemerai®e preserved arttie new elementareset to
zero.

212

ARRAY OPERATIONS

The -alloc-commandsets zreturn to -1 (TRUE) if spacevas found for the array, or to 12 if there was
insufficient memory available.

SeeAlso:
Defining Variables (p190)
Using Arrays(p208)
set Assigning Values to an Array (p. 210)
zero Initializing Arrays (p. 211)
block Block Transfer (p- 212)
alloc Allocating Dynamic Arrays (p- 212)

zlength: Number of Elements in an Array

The zlength function gives the number of elements inaray (including a dynamic array), dhe number of
characters in a marker variable, or the number of bytes in a file:

unit test
i A(10), B(3, 5)
f: D(*,*)
marker: M(4)
file: fd
calc M(2) := "hello"
alloc D(4,9)
showt zlength(D),6 $$ shows 4*9 = 36 elements in D
showt zlength(A),6 $$ shows 10 elements in A
showt zlength(B),6 $&hows 3*5 = 15 elements in B
showt zlength(M),6 $$ shows 4 elements in the M array
showt zlength(M(2)),6 3 shows 5 characters in M(2)
setfile fd; zemtpy; ro
showt zlength(fd),6 $$umber of bytes in selected file

More technicallyzlength(marker) gives the number ofnext operationsrequired to proceethrough the
marker.

After a file has been opened with -addfile- or -setfisdength(file descriptor) gives the length of the file in
bytes.

Sorting an Array

Here we offer asimple example of how to sort amray ofnumbers using a simple "bubble sort,” which
largernumbersare repeatedlgwitchedwith smaller numbers, so th&rge numbersnove to theend of the
array, and small numbers move to the beginning of the array:

unit xTestSort
i: dates(5), nn
set dates := 1945, 1066, 1776, 1492, 800
do Sort(; dates)
loop nn:=1,5
at 10,10+20nn
showt daes(nn), 4
endloop
*

213

CALCULATIONS

unit Sort(; array) $&imple "bubble” sort
i array(*) $$array of integers to sort
i: temp $$temporary work variable
i i, ji 3 loop indexes
loop jii ;= zlength(array), 2, -1
loop ii=2,]
if array(ii-1) > array(ii)
$$ exchange integers so larger number "bubbles" toward end
calc temp := array(ii)
array(ii) := array(ii-1)
array(ii-1) := temp
endif
endloop
endloop
SeeAlso:
Alphabetize a List (p. 278)

214

IF, CASE, and LOOP
IF, CASE, and LOOP

if: IF Statements

The -if- family of commandsallows conditional execution of parts of the progratepending orwhether an
expression in the -if- or -elseif- is TRUE or FALSE.

if expression

. outif expression

elseif expression

. outif $$ may have blank tag
else $&lways blank tag
endif $%always blank tag

The "expression" in the tag of the -if- and -elseif- may be any expression. If this value is (M&yafve), the
indentedcommanddollowing the TRUE expressioare executedAfter the indentedcommandsare processed,
execution continues with the command after the -endif-. If the expression is F&e&Forpositive), thenext
-elseif- (if any) isevaluated. An -else- is alwayeRUE, so if executiorreaches anelse-, theindentedtags
following it will always be done. An -if- statement does not require -elseif- or -else-.

The indented commands in an -if- structure must be indented with a TAB. A series of spaces)isvadegnt. If
you like, a period may be used before the TAB to make the indenting more noticeable.

The -endif- marks the end of the area influencedhey-if-. The -if-commandsmay be nested. Thé, another
-if- sequence may be included as part of the code executed by an -if- cofdigonif- must haveits matching
-endif-.

The -outif- command provides a convenient wayexit from an -if- structure. If the tag of -outif- evaluates to
TRUE or is blank, execution resumes following the -endif- command. To exitrfested if-s, the -outif- may
be "exdented" to the indentation level of the -if- from which you wish to exit. Note that -ouéike@itedonly

if the preceding statement is executed, regardless of the indent level.

Examples:
unit xifl $$ very simple -if-
fra,b $$ a & b get random values:
randu a, 5 $$1<=a<=5
randu b, 4 $$1<=b<=4
at 50,50
write a =<Js,a|>; b = <|s,b|>
if a>b
at 50,80
write a isbigger than b
endif
unit xif2 3 nesting, -outif-
iia, b
calc a=4 $3ry different values for a, b
calc b:=6
at 50,50
write a =<Js,a|>, b = <|s,b|>
at 50,80
if al=b $$ outer -if-

215

CALCULATIONS

outif

endif
write

*

SeeAlso:

write
if
elseif
outif
else

endif
write

inside outer -if-;
b=>8 3 nested -if-

outif 3 exit to "A"

write this line never seen

a<b5

write <|cr|>a less than 5

b=5 $$ also exit to "A"

write <|crj>a < 5; b not5

$dhext -outif- is part of this -else-

write <|cr|>inner else matched

3 exit to "B"

$$end nested -if-
<|cr|>this is position "A"
$$end outer -if-

<|cr|>this is position "B"

Logical Operators

Conditional Commands

(p. 201)
(p. 18)

case: CASE Statements

The -case- family of commands allows conditional execution of parts of the pradgpending orthe value of
its tag. Sometimes a&ase-statement is more convenient than an -if- structure. Moreover, if the selector and
possible values are integers, a -case- statement can execute much faster than the equivalent -if- statements.

case
1

2

else

endcase

selector
write
outcase
write

write

write

$3nteger, float, byte, or marker expression

one

expression $$ may also have blank tag
!

2

other

The tag of ease- isthe "selector" (thevariable or expression of interest). Thessible values of theelector
appear on succeeding lines. Whha value of the selector matches a listed valuejntented codédollowing

the listed value is executed. An -else- mayubedfor "all other values." Several values may be listed on one
line. The selector must be an integer, float, byte, or marker variable.

case
1

PI
2,3,7
else

216

myvar
write

do
outcase

write

write

$$selector may be numeric or marker
$$ case myvar=1

myvar is 1

$$ case myvar=PI
someunit
z=12 $exit if TRUE

myvar = PIl, z not equal to 12
$$multiple values OK
2or3or7
$%all other values

. write

endcase

case title

"Gone with the Wind"
write

"Huckleberry Finn", "To

. write
endcase

none of the above

Margaret Mitchell

m Sawyer"

Mark Twain

IF, CASE, and LOOP

Every -case- statement must end with an -endcase- command. The -outcase- command provides a convenient way
to exit from a ease-structure. If the tag ofoutcase- evaluates fBRUE or is blank, executioimmediately
moves to the command following the -endcase-.

Internally, the operation of thease-statement is basically the same as that ofetfp@ivalent -if- statement.
There is aslight speed advantage gained by changing to -case- when there are multiple comparisorsame the

line. There is @ignificantspeed advantage if the comparisons are among integers.

Examples:

Here are equivalent examples using -case- and -if-. Note that variable expressions (such as "y+3") are allowed.

unit xcasel $¥ersion using -case-
iiy, z
calc z:=47 $%et y & z to some values
y =18
at 15,15
case z $$ z ithe variable of interest
40, 50
write z iseither 40 or 50
y+3
write zZ=y+3
else
write Z isneither 40,
nor 50, nor (y+3)
endcase
*
unit xcase2 $¥version using -if-
iiy, z
calc z:=47 $%et y & z to some values
y =18
at 15,15
if z=40|z=50
write Zis 40 or 50
elseif z=y+3
write zZ=y+3
else
write Z isneither 40,
nor 50, nor (y+3)
endif
SeeAlso:

Logical Operators

Conditional Commands

(p. 201)
(p. 18)

217

CALCULATIONS

loop: Looping and Iterations

The -loop- family of commands is used to do repetitive operations. The commathesbidy of the loop (the
indented commands between -loop- and -endloop-) are executed over and ogenugtiiingcauseshe loop to
stop.

The -outloop-command is used texit from a loop. If the tag of -outloomvaluates toTRUE or is blank,
execution immediately moves to the command following the -endloop-.

When -reloop- has a blank tag or when the expression in the tag is TRUE, execution immediately goes back and
begins the next cycle through the loop.

loop $$open-ended
loop expression 3 "while"
loop var:=begin,end,increment $$ iterative

outloop expression
outloop $$ may have blank tag

reloop expression
reloop $$ may have blank tag

endloop $$ must end every -loop-
There are three types of loops:

1) -loop- with no tag

2) -loop- with a logical expression

3) -loop- with specified iterations

The -loop- with no tag cyclegntil it is interrupted. Itwill go foreverunless an exit isrpvided. The normal
way to exit from such a -loop- is with an -outloop- command. A -jump- might also be used.

loop
;)‘Lljtloop z=8
éﬁdloop
The -loop- with a logical expression in the tagrépeatedwhile the expression is true. The loop below is

repeated as long as "a" is larger than 3. Sincer#@melu- isassigningrandomvalues into a, we canngtedict
how many times the loop will be executed.

calc a=0
loop a>3

randu a,4
endloop

When -loop- has an iterativag (var := begin,end,incrementhe loop isdonerepetitively while thevariable
"var" is increased byincrement"until it becomegreaterthan "end". Theloop below isexecutedexactly 5

218

IF, CASE, and LOOP

times, with count = 2, 4, 6, 8, and 10. The value of the indexing variable (i.e. "coudOjTigguaranteed after
the end of the loop. Its value may differ on different machines.

loop count :=2,10,2
endloop
$$ at this point, thealue

$$ of "count" is noknown

If the "increment” in an iterative loop is omitted, it is assumed to be 1. The increment maygatiweand/or a
fraction. When the increment is negative, "var" decreases from "begin" until it becomes less than "end".

In the case of nestetbops, both -outloopand feloop-refer tothe -loop- at the same indelgvel. You can
escape more than one level by placing the command directly under an outer -loop-:

loop m:=1,5 $$ outer loop
loop s:=1,10 3 inner loop
outloop 3 leave inner loop
outloop 3 leave inner loop
outloop 3 leave outer loop
endloop $$ end inner loop
endloop $%end outer loop
Examples:

The example belowlraws aseries of vertical linesising an iterativéoop. Theincrement is10, so the lines
appear at 50, 60, 70, etc.

unit xloopl
ir X
loop X := 50, 200, 10
. draw X,50; x,250
endloop

*

When -loop- has a blank tag, some means must be provided for exiting from the loop or it ¥atewan. The
example below exits when count>6 or x>80.

unit xloop2 $$ use "Run from Selected Unit"
i: X, count
next xloop2
calc count:=0
loop
calc caint :=count + 1
reloop count=3 3 skip count = 3
outloop count > 6 $$ exit if count > 6
randu X,100 $$ choose 0 < x < 101
at 100, 50 + 15*count
show count
at 150, 50 + 15*count
show X
. outloop x > 80 3 exit if x > 80
endloop
*

219

CALCULATIONS

The -loop- in the next example uses an increment that is both fractional and negative.

unit xloop3
f: value
i: ypos
calc ypos := 20 $$ position for 1st line
at 50,ypos
write value
at 120, ypos
write sqrt(value)
loop value := 2,0, -.25 $$value =2,1.75,15,1.25...
calc ypos := ypos + 20
at 50,ypos
showt value, 1, 2
at 120,ypos
showt sqrt(value), 1, 4
endloop
SeeAlso:
Logical Operators (p. 201)

220

RANDOM VARIABLES
Random Variables

randu: Random Values

The -randu- command assigns a random value to the named variable.

randu variable $$ fraction between 0 & 1
randu x,maximum 3 1 <= x <maximum

When -randu- has only one argument, the value selected is a fraction betamseri ®Vhenthe tag of randu-
has two arguments, the value selected is an integer ranging from 1 to the second argument.

Examples:

The first example below makes 500 random dots in the box. The second example just multiplies two fractions.

unit xrandul $$ -randu- with integers
i: X,y,count

box 0,0; 300,200

loop count := 1, 500
randu X,300 $$ 1 <=x<=300
randu y,200 $$ 1 <=y<=200

. dot X,Y

endloop

at 180,130

write all done

unit xrandu2 $$ -randu- with fractions
f:x,y

randu X $$0<x<1

randu y $$0<y<1

at 100,50

write <|s,x|> times <|s,y|> = <|s, x*y|>

SeeAlso:
Embedding Variables in Text (p. 50)

Permutations(p. 221)

Permutations

Repeatedxecution of therandu-commandmay choose the same numbers more than once. Sometimes it is
useful to choose numbejgst once from alist. This can beachieved byforming a "permutation" of the
numbers. For example, a permutation of the first five integers is 43152 or 25132. Here is a routine to do this:

Examples:
unit GetPermutation
i: array(5), index
next GetPermutation
do Permute(;array)
at 10,20

221

CALCULATIONS

222

loop index :=1,5
write <|s,array(index)|>

endloop

*

unit Permute(;random) $$ make a permutation array
i: random(*)

i: size, available, choice, nn
* For concreteness, suppose the array is 5 long.
* |nitialize the array to 1, 2, 3, 4, 5.
* Choose a random number from 1 to 5. Suppose it is 2.
* Swap the contents of element 2 and 5, so now the array holds 1, 5, 3, 4, 2.
* Next choose a random number from 1 to 4. Suppose it is 3.
* Swap the contents of element 3 and 4, so now the array holds 1, 5, 4, 3, 2.
* Continue, reducing number of available slots, till all contents are permuted.
calc size := zlength(random)
loop nn := 1, size $$ initialize array to 1, 2, 3, 4, 5....
calc random(nn) ;= nn
endloop
* After each choice, available slots reduced by 1:
loop available :=size, 2, - 1
* Choose among available slots:
randu choice, available
* Save current contents of last slot:
calc nn :=random(available)
* Move "choice" slot to last slot:
calc random(available) := random(choice)
* Move what was in last slot into "choice" slot:
calc random(choice) ;= nn
endloop
*

UNITS -- PROGRAM SUBDIVISIONS

6. Connecting Units & Programs

Units -- Program Subdivisions

unit: Basic Building Blocks

Every cT program is divided into subdivisions called "units". Each unit has a unique name, which is the tag of a
-unit- command.

unit somename

unit calculate(a; varl)
f: a,varl,tx,ty $$ may have local defines

A unit name must begin with a letter and may contain letters, nundetthe underscore character. itay be
30 characters long. Unit namesnnotcontain any punctuation marks or spaces. Unit naregasesensitive:
"one" and"One" are differennames.There is no specific commarfdr "end-of-this-unit." Aunit ends when
another -unit- command (or end-of-file) is encountered.

A unit may usevariablesthat are local to that unit.Local variablesare defined onthe lines immediately
following the -unit-. Thecommand field isblank; the definitionsare a "continuation" of the -unit-
specifications. The syntax for local variables is the same as the syntax for global vésedbletefine-). If no
local variablesare used,all global variablesare automatically available to thenit. If the unit will use both
global and local variables, the first line of the definitions must be "merge,globahd, namedgroups of
variables may also be referred to

unit myunit
merge,global: 3 use global defines
f.a, b, c $$ local variables
merge,mygroup: $$ use a named group of variables

A unit receivesinformation from a do-, jump-, or menu- command bgpecifying arguments toeceive the
information. A unit may receive 10 pass-by-value arguments plus 10 pass-by-address arguments. The arguments
should be defined as local variables.

unit somename(argl; placel,place2)
f: argl, placel, place2

The variable named in the first arguméartgl) receivesnformation that is'passed byalue". The arguments
after the semicoloffplacelandplace?) receivénformation that is'passed-by-addressThe argumentseceived
by a -unit- must match in number the arguments sent bydtheor jump-. For pass-by-addresgriables, the
variable type (i.e., integer, marker) must also match. The discussion aotteommand includes details about
passing arguments.

Example:
unit Xunit $$unit named "xunit"
i N $$ local variable
randu N, 10 $$andom integer into N
at 50,50
write The local variable

"N" is <|s,N[>.

223

CONNECTING UNITS & PROGRAMS

SeeAlso:

Moving between Main Units (p. 237)
define Global Variables and Groups (p- 193)
Summary of Variable Definitions (p- 190)
Local Variables (p. 195)
do Calling a Subroutine (p. 224)
IEU The Initial Entry Unit (p. 227)
Pull-down Menus (p. 136)
imain Modifying Every Unit (p. 232)
iarrow Arrow Initializations (p. 173)
jjudge Judge Initializations (p. 175)
eraseu Erasing after a Response {{7.5)
Unit Markers zcurrentu & zmainu (p. 336)

do: Calling a Subroutine

The -do- command executes the unit named in its tag as a subroutine. When a -do- is encourdenatatis
in the named unit are executed, and then the commands following the -do- are executed.

do thatunit

do someunit(4.7, Ith; zonk, zip)

do \expression \one \two(a,b) \ \ \final $$ conditional -do-
do (marker)(1,2) $$ unit name in a marker; details below

Pass-by-value: The do- commandoptionally may pass arguments to the subroutine. The arguments that
appear before the semicolon are "passed by value," and the subroutimee dhwse values but caattange the
original variables (for a partial exception, gbe topic"do PassingMarkers"). Consider théllowing use of
pass-by-value arguments:

calc initial := 10
do ShowSum(initial, 3.2)
unit ShowSum(xx, yy)
float: xx, yy
show XX 1= xx+yy $$ doesot change "initial"

The effect is as though you had assigned the value "initial" to xx and the value "3.2" to yy:

calc xx :=initial
yy = 3.2
show XX I=EXX+YY

Pass-by-addressin contrast to the pass-by-value arguments, ttawgaments that comafter the semicolon
in the -do- statemerdre "passed by addresstie subroutine is toldvhere inthe computer's memorthis
variable is locatedwhich makes it possible for the subroutinealter the variable, not just use its original
value. For that reasopass-by-address can be usedjéb acalculatedresultback from asubroutine.Consider
the following sequence, in which the pass-by-value variable "num" is unaffected pastiby-address variable
"result" is changed:

do Solve(num; result)
unit Solve(n; x)
i: n, X

224

UNITS -- PROGRAM SUBDIVISIONS

calc n:=n+10 $$ does NOT affect "num"
x :=x+n $$ equivalent to result := result+num+10

When using pass-by-address, the variable types must match. That is, youpzmsHnt-address anteger to a
float, or a float to an integer. With pass-by-value, however,canumix integersandfloats, andthe necessary
conversions are performed automatically (e.g., a float is rounded to the nearest integer). EpassAitfvalue
you can't mix markers with integers or floats, because text and numbers are treated quite differently.

Number of arguments: The €do- command can have up to 10 pass-by-vadme 10 pass-by-address
arguments. The number of arguments in the receiving -unit- must match the number of argumentioin ifhe -
there are no pass-by-value arguments, an initial semicolon is needed to show that fact:

do sub(; pos, speed, time)

Arrays passed-by-addressAn individual element of an array can passed-by-value to subroutine, but a
whole array cannot be passed-by-value. Whole arrays can, however, be passed-by-address:

unit DataHandler
i: data(50, 10)

do Sum(; data) $%$ just name the array; no indices
unit Sum(; work)
i: work(*, *) $$ array bounds will be filled in
3 do calculations on "work(i, j)"
Note carefully that the -do- statement contains the name of thevdathayt any indicesandthat thedefinition
of the "work" arraymust have asteriske indicate unspecified array lengths. Two asterisks are necéssanyse

the array "data" has two dimensions.

The zlength function tells the total size of aray. Inthe case above of &0*10 array, "zlength(data)" or
"zlength(work)" is equal to 500.

Pass-by-address required: Other complex variables such as fidescriptorsand screen variables can be
passed-by-address to subroutines but cannot be passed-by-value.

Unit names in markers: The unit name can be in a markexriable:

unit mtest
marker: subl
calc subl ;= "Trylt"
do (sub1)(10,20) $$% equivalentto -do Trylt(10,20)-
Examples:

Unit "xdol" illustrates pass-by-value. The arguments may be numbers, variables, or expressions.

unit xdol
f. tmp
calc tmp = .7
at 100,50
do thatunit(3, tmp, 12) 3 3 arguments passed
at 100,120

225

CONNECTING UNITS & PROGRAMS

do thatunit(sin(2*tmp), -13, 5.6E+4)

unit thatunit(a, b, c) 3 receives 3 arguments
f:a, b, c

write a=<|s, a>
b =<]s,b|>
c =<|s,c|>

Units "xdo2" and"xdo3" differ only in the way K ispassed tadhe subroutine. In "xdo2", thealue of K is
passed, and that value is not affected by what happens in "xdo2a".

unit xdo2
i: K
calc K:=45
do xdo2A(K) $$pass value of K
at 100,150
write back inxdo2

K = <|s,K|> $$ Kunchanged

*

unit xdo2A(N)
i: N
at 50,50
write Press "s" to stop the counter.
loop
calc N := N+1
erase 100,100; 150,150
at 100,100
show N
. getkey
outloop zkey=zK(s)
endloop

In unit "xdo3", the -do- command has a semicolon bdfor€he addressof K is passedandthe value ofK is
changed by "xdo3a".

unit xdo3
ir K
calc K:=45
do xdo3A(;K) 3 pass address of K
at 100,150
write back inxdo3

K = <|s,K|> 3 K has new value

*

unit xdo3A(;N)
i: N $$ N same type (integer) as K
at 50,50
write Press "s" to stop the counter.
loop
calc N := N+1
erase 100,100; 150,150
at 100,100
show N

226

UNITS -- PROGRAM SUBDIVISIONS

. getkey
outloop zkey=zK(s)
endloop
SeeAlso:
do Passing Markers (p. 253)
Units -- Program Subdivisions (p. 223)
Local Variables (p. 195)
Logical Operators (p. 201)

Using Arrays(p208)
Conditional Commands (p. 18)

IEU: The Initial Entry Unit

The IEU, or initial entry unitrefers tothosecommandsthat appear beforéhe first -unit- commandThese
commands are always executed when the program is entered. After the IEU is finished, execution proceeds to the
first (physical unit) in the program. In editing mode, when "Run" ofethte” fromselected or currentnit is

chosen, execution proceeds from the IEU immediately into the specified unit.

The -define- command (for global variables and groups of variablgsbe in the IEU. Othecommands that
describe the environment of the prograre usually placed inthe IEU so that the editing environmemill be
correct when running or executing any unit. The IEU might look like this:

define i:DIM1=50, DIM2=100
MaxTrials =5
f: MyArray(DIM1, DIM2)

font zsans,12

fine 500,500

rescale TRUE, TRUE, FALSE, TRUE

icons "myicons"

imain MyMainUnit

do BasicMenus

do InitializeVariables

color zblack,zcyan $$ establish color environment

wcolor zcyan

erase

*

If there are -use- files, their IEUs are executed after the original IEU, and before starting the first main unit in the
original file. This makes it possible for each -use- file to do some of its own initializations. In the original IEU
you should notdo- aroutine in a use-file, becausdhat file might not yethave executedits own IEU to
initialize things.

SeeAlso:
jump Jumping to a New Topic (p. 239)
fine Declaring a Screen Size (p. 35)
rescale Adjusting the Display (p. 37)
font Selecting a Typeface (p. 43)

227

CONNECTING UNITS & PROGRAMS

Main Units

A program can move from unit to unit wigequencing commandsich as -next-, -backand jump-. A unit
reachedhrough the action of suckequencing commands is mdin unit." The main unitsare the anchor
points around which the flow of the program is built.

Note: Main units and window reshapes or redisplays are treated below, Red¢arting main units."

In many programs, a process (such as a payroll calculation) starts at the begmhirtgks in a straight line
until the process is done. cT is designed for programs where the path may not be a straight liner iag
want to repeat one secti@everaltimes, review previous sections, consult a glossary, orbgok to anndex
andstart over. In this situation, thgrogrammust be a collection of relativeljndependenmoduleslinked
together for easy mobility.

Program execution starts with the IEU (Initial Entry Unit), the statements preceding the first -unit- command. If
there are -use- files, their IEUs are also executed. Then cT starts executing the first phitsicathe original
file.

After the first unit, which is always a main unit, tbeder ofexecution is completelgontrolled bysequencing
commands. Whethe lastcommand in anain unit hasbeen executedexecution issuspended and does not
resume until the user takes some action. The possible actions (not necessarily all available in every unit) are

- Press ENTER

- Select (Next Page) from menu
- Select (Back) from the menu

- Select Quit from the menu

- Select some other menu item
- Click the mouse

ENTER andNext Page)are available if a -next- command is active.efiable touch- is active, clicking the
mouse is equivalent to pressing ENTERack) is activated with a -back- commar@uit is always available
(shown afQuit running when in programming modeY.ou can provideother menu items with thenenu-
command.

The end of the program is reached whama endsandthereare nooptionsfor the user to "moveomewhere
else." That is, the user has completed a main unit that contains no sequencing commands and tina¢rias no
choices (except Quit). Pressing ENTER at this point exits from the program. You can also terrpiograra

by executing a -jumpout- command. Authors frequently store miscellaneous rdatuaedthe end ofthe file,

so that the final unit in the execution of a program is usunatthe last unit in a file.

The name of the current main unit is contained in the system variaali@u.

One unit may execute anothemit with a do- command. Aunit reachedwith a -do- command is a subsidiary
unit and is called dsubroutine.” At theend of asubroutine, execution continues with tbemmandthat
follows the -do-. The -imain- command allows a subroutine to be do-ne at the begineusgyahain unit. In
principle, the same unit could be (at different tindesing the execution of @rogram)both a main uniand a
subroutine. Inpractice, a subroutine igsually a smallspecial-purposenit thatdoesnot containsequencing
commands.

Some thingsareinitialized whenever anain unit is executed;see"Main Unit Initializations." The imain-

commandlets you specify ainit to bedo-ne atthe beginning ofevery main unit, to perform additional
initializations of your own.

228

UNITS -- PROGRAM SUBDIVISIONS

Restarting main units: When the display needs to be restored (becausaititow size changed or another
window passed in front), execution recommerfo@® the beginning of theurrentmain unit. This means that
you must be prepared to start a mairit over at anymoment,because/ou do not know when the user may
reshape the window, or bring the window forward from behind some other windows.

In all computer programs omodernmachines, not just programs written in cT, if yetaseany part of a
window (by going to a different application or moviagother window infront of the existingwindow), upon
returning to the program the program is toldré@xecutetself to restorethe window display, because the
underlying operating systemdoes not save a copy of thdisplay that it destroyed For example,
when you go from a word processor to another applicanmback tothe word processor, thevord processor
has to reexecute itself to redisplay the contents afiitslow. Oftenthis redrawing isless noticeable than in a
cT programbecause it doesrdrasethe entirewindow first as cT presently does, dnly a portion of the
window was erased/occluded.

The mechanism that cT grides toyou for coping withthis issue isassociatedvith "main units." Théfirst

unit in the program is a main unit, and any unit reached by -jump- or -next- or -back- (but not by -do-) is a main
unit. Any time the user returns to cT, thndow is erased anthe currentmain unit isre-executedfrom the
beginning of that main unit. In triviatasesthis automaticallyrestores the screen, if executing from the
beginning of the unit is sufficient to restore the display.

However, if in one main unit the user has done many thingsaffeztedthe display, the user certaintipesn't
want to go through all that again to get backMuere he oishe was. That means ybave aproblem, unless
you can organize the program to -jump- to a new nodih whenever a particulastage in the interaction has
been completedThis unfortunately puts a programmirdgirden onyou that cT is powerless tbandle
automatically for you. Essentially, what you must d&kéep track of whathings theuser has donend use
that stored information to restore the screen appropriately.

One reasonable scheme is to use a global variable to track how far through the unit the user hasdyaten,
the contents of thatariable todecidewhat graphics to restore the screen. Arelatedscheme is to take an
"object-oriented" approach iwhich there is aglobal statusvariable corresponding teachmajor graphical
element of the screeand atthe beginning of the main unit you use these statuigbles todecidewhat to
display. Note that these global variables need to be initiatizémrejumping into the main unit.

One other cT feature that can be useful in managingvimgow-redrawingproblem is that the systerariable
zreshapeis TRUE atthe beginning of a main unit if that main unit Hasenreexecuted due tthe window
being broughtforward after being occluded, orthe window being reshaped.You can checkthe value of
zreshapeat the beginning of a main unit to see whether this is a reexecution rather than a first execution.

Example:

Use "Run from Selected Unit" to try out this example. Try reshapingvidow while you arerunning. This
"program"” has no end, because both main units contain sequencing commands.

unit xMain $$ a main unit

next xMain2 3 sequencing command
at 38,29

write Hello! This is "xMain".

do xdonel $%lo-ing a subroutine
do xdone2 $%lo-ing a subroutine
at zxmax - 60, zymax - 35

write Press <|cr|>ENTER.

back Xunit $$ unit named "xunit"
*

unit xdonel $$ a&ubsidiary unit

229

CONNECTING UNITS & PROGRAMS

box 52,98;196,144;4

at 78,116

write This is xdonel.

unit xdone2 $$ a&ubsidiary unit

at 19,236

write This is xdone2.

at 60,238

circle 60

unit xMain2 $$ a main unit

back xMain 3 a sequencing command
box 30,15; 200,55

at 50,30

write Now in unit xMain2.

do xdonel $%lo-ing a subroutine
at zxmax-125, zymax - 35

write Now select{Back)

from the menu.

*

Here is an example in which a global status vari@idtevFar) keeps track diow far the user got through the
main unit. Try reshaping the window at various stages to see what happens.

define group,status:
i HowFar $$1, 2, 3, 4 for stages 1, 2, 3, 4
i: SHOW=10, ERASE=11 $$ options for displaying or erasing

*

unit xInitialize
merge,status:
calc HowFar ;=1 $$ initialize HowFar
jump xFirst $Pmake "First" be the main unit, the anchor point
*
unit xFirst $$the main unit, will restart here
merge,status:
do xStage(HowFar,SHOW)

* Interact with user, incrementing HowFar as they pass various stages.
* Do not present information inappropriate for user who has passed a stage.

if HowFar =1

pause keys=all,touch

do xStage(HowFar,ERASE)

do xStage(HowFar := HowFar+1,SHOW)
endif
if HowFar = 2

pause keys=all,touch

do xStage(HowFar,ERASE)

do xStage(HowFar := HowFar+1,SHOW)
endif
if HowFar =3

pause keys=all,touch

do xStage(HowFar,ERASE)

do xStage(HowFar := HowFar+1,SHOW)
endif

230

UNITS -- PROGRAM SUBDIVISIONS

unit xStage(nstage,display) $$ display graphics for a stage
merge,status:
i: nstage 3 which stage we're in
i: display $$ = SHOW if should display, ERASE to erase
case display
SHOW
mode write
ERASE
mode erase
endcase
case nstage
1
*make initial display
fill 25,20;130,75
at 140,30
write Stage 1
2
*make display appropriate to user who has passed stage 1
vector 12,12;140,80
at 100,35
write Stage 2
3
*make display appropriate to user who has passed stage 2
circle 60,15;85,95
at 125,50
write Stage 3
4
*make display appropriate to user who has passed stage 3
disk 60,40;160,60
at 91,74
write Stage 4
endcase
mode write
SeeAlso:
Main Unit Initializations (p. 232)
Moving between Main Units (p. 237)
Summary of Variable Definitions (p- 190)
Local Variables (p. 195)
IEU The Initial Entry Unit (p. 227)
do Calling a Subroutine (p. 224)
imain Modifying Every Unit (p. 232)
Pull-down Menus (p. 136)
iarrow Arrow Initializations (p. 173)
ijludge Judge Initializations (p. 175)
eraseu Erasing after a Response {{7.5)
jumpout Jump to Another cT Program (p. 241)

231

CONNECTING UNITS & PROGRAMS

Main Unit Initializations

Many initializations are done at the beginning of a main unit:

- the screen is cleared

- the mode is set to "write"

- the current screen position is set to 0,0

- the left and right margins are set to the edges of the display
- all variables associated with response handling are initialized
- inhibit/allow defaults

Some modifications, once made, last for the entire program unless they are explicitly changed:

- the selected font and icons

- the cursor icon

- the graph origin and scaling

- the size and rotate for relative commands
- the -fine- and -rescale- settings

- the -imain- command

- the menus

- clipping

NOTE: Because the program is sensitive to the "history" watpect tothese commands, it is important to
realize that "Execute Selected Unit" may behave differently from "Run from Beginning.” If thepasmeeters
will last for the entire program, the -font-, -icons-, -finerd -rescaleecommands should go ithe IEU, the
statements preceding the first -unit- command.

SeeAlso:

IEU The Initial Entry Unit (p- 227)
fine Declaring a Screen Size (p. 35)
rescale Adjusting the Display (p- 37)
font Selecting a Typeface (p. 43)
icons Selecting an Icon (p- 93)
imain Modifying Every Unit (p- 232)
iarrow Arrow Initializations (p- 173)
jjudge Judge Initializations (p- 175)

Judging System Variables (p. 330)

imain: Modifying Every Unit

The -imain- command causes the unit named in its tag to be executed at the begiemery stibsequemhain

unit as if it had been inserted into that unit with a -do- command. It is used to insert code that neaits¢o be
for every new main unit, such asita-keeping or a fancy frame arouhé display. The special tédq" cancels

the effect of any previous -imain- command.

imain someunit
imain g 3 cancel previous imain setting

The -imain- command typically belongs either at the very beginning (itEteor in aunit thatserves as a
title-page or index. One imain unit is often appropriate for an entire program.

The imain unit can be changed at any time by an -imain- command, but the effect isurdtl féie next main
unit. Notice that this can be a bit tricky, because if sheeen changesize, thecurrentmain unit isreexecuted

232

UNITS -- PROGRAM SUBDIVISIONS

and thenewly specifieanain unit is executed. This may not be what you want. In such caseguenceuch
as the one below is required:

imain firstmain
*

unit one
next oneb

* some code in thignit

*

unit oneb

imain secondmain
jump two

*

unit two

*

The unitfirstmain is the imain unitfor unit one If the screen is reshapefilistmainis still the imainunit.
When the user presses ENTER to continue to the next unitt@uo)it control first passes to unitnebwhich
does nothing at all except reset the imain @mdjump to unittwo. This "protects" the imain unit while the
user is in unibne but allows a different imain unit to be executed for twmd

Example:

To try this sequence, put the editing cursounit "xImainZero",makethis the"Selectedunit”, anduse "Run

from SelectedUnit." Unit "xImainZero" activates the -imaindnit. The -jump-causesthe program to go
immediately to unit "xImainTitle", so there is no pause between "xImainZero" and "xImainTitle" Note that the
-menu- option (Quick Grammar) is active in unit "three" even though the reminder message does not appear.

unit xImainZero
imain mymain 3 activate imain unit
menu Quick Grammar: quickgram

3 might zero variables here . .
jump xImainTitle $$ no hesitation here
*
unit xImainTitle

3 as if -do mymain- were at this point
next xImainOne $$ sequencing command
text 0,100

This is a Fancy Title

\
*
unit xImainOne

3 as if -do mymain- were at this point
next xImainTwo $$ sequencing command
do message(1, 50)
*
unit xImainTwo

3 as if -do mymain- were at this point
imain q $$ no -imain- in next main unit
next xImainThree $$ sequencing
do message(2, 100)
*
unit xImainThree
do message(3, 150)

233

CONNECTING UNITS & PROGRAMS

*

unit message(n, tx)
i: n, tx
at tx, 150
write This is unit #<|s,n|>.
*
unit mymain $$ my -imain- unit
text 0, (zymax-25)

Use the menu for Quick Grammar.
\

*

unit quickgram
erase 0,zymax-40; zxmax, zymax
text 0,zymax-40; zxmax, zymax

Noun - o; Adjective - a; Adverb - e
Present - as; Past - is; Future - os
\

*

SeeAlso:
Moving between Main Units (p. 237)
Summary of Variable Definitions (p- 190)
Local Variables (p- 195)
do Calling a Subroutine (p. 224)
Pull-down Menus (p. 136)
iarrow Arrow Initializations (p. 173)
jjudge Judge Initializations (p. 175)
eraseu Erasing after a Response {{7.5)

outunit: Exiting from a Unit

The -outunit- command allows premature exit from a unit. If the tag is blank or evaludtB&, execution
goes to the end of the unit.

outunit $$ blank-tag, unconditional exit
outunit expression 3 exitTRUE

The -outunit-command isnot the same as a -jumpemmand. The -outunit- merely moves to #rel of the
unit, thus skipping all interveningpmmands. ldoesnot changethe main unitand it doesnot change any
sequencing commands (-next- or -back-) that are in effect. The -jump- command is muchastaeit causes
the program to "forget" the current status and to move to an entirely new place.

Code using -outunit- can always be treated more formally by a series of -if-s. However, when a series of -if-s is
very deeply nested and/or very lopsided, it may be clearer and more convenient to use -outunit-.

Examples:

In the following example, -outunit- is used to terminate a recursive routine:

unit xoutunit
rorigin 150,150
inhibit startdraw $$ prevent first -rdraw- segment

234

do

*

unit

outunit
rotate
rdraw
do

*

UNITS -- PROGRAM SUBDIVISIONS

spiral(720, 100, 0.97)

spiral(angle, length, factor)

f. angle, length, factor

angle < 10

angle

;length, length

spiral(angle*factor, length*factor, factor)

The following units -xoutunitland xoutunit2- do exactly the santhing. Theyare not equivalent ifcode is
added after the last -endif-. In the second unit, the indenting makes it immediately obvidherthé& adeeply
indented structure. However, it is vemylky andmay be difficult toread.The first unit isvery compact, but
gives fewer cues about the underlying structure.

unit
calc

at
write
outunit
write
outunit
write
outunit
write

*

unit
calc

at
if

else

endif

xoutunitl $$ example using -outunit-

i: a,b,c,d

a:=b:=TRUE $% choose some values
c:=d:=FALSE

50,50

\ a\This is A\ This is not A

not(a)

\ b \and B\ but not B

not(b)

\ c\and C\ but not C

not(c)

\ d \and D\ but not D

xoutunit2 $$ example using -if-

i: a,b,c,d
a:=b :=TRUE
c:=d:=FALSE
50,50
a
write This is A
if b
write and B
if C
write and C
if d
. write and D
else
. write but not D
. endif
else
. write but not C
. endif
else
. write but not B
endif
write This is not A

$$this is the last command in the unit

235

CONNECTING UNITS & PROGRAMS

SeeAlso:
if IF Statements (p. 215)
Logical Operators (p. 201)

236

MOVING BETWEEN MAIN UNITS
Moving between Main Units

next: Moving Ahead

When program execution reaches the end of a main unit, execution stops and waits for the user to take an action.
The -next-commandgives the name of thenit that will beexecutedvhen the ENTER key ipressed. The

-next- commandlso causeghe option(Next Page)to appear orthe menu when theurrentmain unit is

finished.

next someunit

next \expression\negunit\posunit\greater

next \okays=17\\review

next \okays=17\x\review $$ x same as nothing
next q $$ cancel next setting

The -next- commandoes notcause an immediate action. Instead, it sets a flag that says "whemdtbé the
unit is reached and the user presses ENTER, then move to unithéfe arehree equivalent usexctions that
will move to the "next" unit:

1 - Press ENTER (or the equivalent button on your machine)
2 - Select (Next Page) from the menu
3 - Click the mouse, if -enable touch- has been activated

The "g" tag cancels amext instruction that was given earlier. Either nothing or an "x" médasiothing" --
do not change the existing -next- unit.

Every main unit must have some way of specifying "what to do next." This is oftesxta eommand, or it
can be some -menu- option. The end of the program is reached when execution comes to a main unit that has no
directions for moving to another unit (no -next-, no -back-, no active -menu-).

The name of the current main unit is contained in the system varisali@u.

The unit name can be in a marker variable:

unit mtest
marker: subl
calc subl :="Trylt"
next (subl) $$ equivalent to -next Trylt-
Examples

This example moves fromnit "xnextOne" to unit "xnextTwo". Unit xnextTwo contains nsequencing
instruction, so when the uspresses ENTER or chooses (Next Page) on the menu, he wilsHeave the
program. Use "Run from Selected Unit" to try these examples.

unit xnextOne

next xnextTwo

at 50,50

write This is "xnextOne."
*

unit xnextTwo

at 100,50

237

CONNECTING UNITS & PROGRAMS

write This is "xnextTwo."

*

In this second set of example units, every (main) unit has a -next- commatéresis no end-of-program. To
exit from the program the user must sel@cit from themenu.

unit XNextA
next XNextB $$set next unit = "xNextB"
at 50,50
write This is unitxNextA.
do continue $$ instructions
*
unit xNextB
f: temp
next XNextA $$set next unit = "xNextA"
randu temp,3 $$ choose random #: 1, 2 or 3
next \temp=1\ xNextC \ x $$ modify "next" unit
at 100,50
write This is unitxNextB.

The current value
of temp is <|s,temp|>.

do continue

*

unit XNextC

next XNextA $Fremove this line, and try again
at 50,20

write This is unitxNextC.

We arrived in unit xNextC because the expression
"temp=1" was true, so that the -next- setting in unit
xNextB was changed from "xNextA" to "xNextC".

do continue

*

unit continue

text 0,zymax-40; zxmax,zymax

To continue, press ENTER, or
select (Next Page) from the menu.
\

*

SeeAlso:
Main Units (p. 228)
imain Modifying Every Unit (p. 232)
unit Basic Building Blocks (p. 223)
enable Allowing Mouse Input (p. 132)
Logical Operators (p. 201)

Conditional Commands (p. 18)

238

MOVING BETWEEN MAIN UNITS

back: Reviewing Previous Material

The -back- command provides a convenient waytHeruser toreview aprevious portion of the program. The
-back- command causeqBack) choice to appear othe menu.When BACK is chosen, execution moves
immediately to the unit named in the argument of the -back- command. Theoasaot need to be athe end
of the unit to chooséBack).

back one
back q $$cancel back setting

Frequently thgBack) choice returns the user to the previous "page” or topic. Bdek- command i@ptional,
the author must decide when it is appropriate to provide for review.

The name of the current main unit is contained in the system variaali@u.

The unit name can be in a marker variable:

unit mtest
marker: subl
calc subl :="Trylt"
back (subl) $$ equivalentto -back Trylt-
Example

Use "Run from Selected Unit" to try this example. Use the men{Bfmk).

unit xbackOne
next xbackTwo $$ set "next" unit
at 50,50
write hello
*
unit xbackTwo
back xbackOne $$ set "back" unit
at 150,100
write hello, again
*
SeeAlso:
Main Units (p. 228)
imain Modifying Every Unit (p- 232)
unit Basic Building Blocks (p. 223)

enable Allowing Mouse Input (p. 132)

jump: Jumping to a New Topic

The -jump- command provides a way to move immediately to another unit without waiting for the selecto
(Next Page) (Back), or some other menilem.

jump someunit
jump \expression\unitneg\unitzero\unitplus
jump myunit(a,b,c; zz1,zz2)

239

CONNECTING UNITS & PROGRAMS

The -jump- action occurs as soon as ¢tbenmand is encountereaindcommanddollowing the -jump-are not
executed. After a -jump- has been made, the new unit becomes the "maiafidthi¢ program "forgetsivhere
it came from. All of the usual main unit initializatiomse done, includingerasure othe displayand execution
of any -imain- unit. Note that -jump- is a much more drastic operation than -do-.

The -jump- command essentially lets you divide your programdeteral differensubprogramseachwith its
own distinctive displays and interactions, but sharing many of the same subroutines (-do-).

The -jump- command passes pass-by-value arguments the same way as the -do- command. Tdwejuenp-
cannot pass arguments bgddress. (Refer tdhe do- write-up for information about passing arguments.)
Although the -jump- command allows passing of arguments to main units, this &lviegd. Ifthe display is
reshaped, execution starts again, but the arguraest®t passedagain. Numeric local variabldsut not other
kinds of local variables retain the values they had just before the reshape.

The unit name can be in a marker variable:

unit
calc

jump

Example

This rather silly example shows some numtmrdthen immediateljumps to "xjump2". Notice thathere is

mtest
marker: subl
subl :="Trylt"

(subl) $$ equivalentto -jump Trylt-

no user input, and no -next- command involved.

unit

loop

endloop
jump

unit
at
write

*

SeeAlso:

240

Main Units
imain
do

Xjump

i: count

count:=1, 10
showt count,3
pause 0.1

Xjump?2

xXjump2
100,100
after the -jump-

(p. 228)
Modifying Every Unit (p. 232)
Calling a Subroutine (p. 224)

Conditional Commands (p. 18)

jumpout

Jump to Another cT Program

(p. 241)

CONNECTIONS TO OTHER PROGRAMS
Connections to Other Programs

Overview of Program Connections
Several commands are needed to allow one to

1) Stop a cT program in the current window and start a new one (-jumpout-)

2) Initiate a new (independent) program in a new window (-execute-)

3) Initiate a new program and send information back and forth (-execute-, sockets)
4) Call a subroutine in some other language (e.g., C or Pascal) (not yet available)

The execute- commantbr initiating another program is currently availalbdaly on Unix machines. cT also
offers the ability for different programs to communicate witkachother through socketésee the socket-
command, which can be used on Unix and Macintosh).

SeeAlso:
Overview of Sockets (p. 311)

jumpout: Jump to Another cT Program

The -jumpout-command provides a way fquit running a progranand (optionally) start running alifferent
program:

jumpout $$ no tag, ends the program as though user had chosen "Quit"
jumpout g $3%$ qis equivalent to no tag
jumpout "test.t" $$ marker expression naming a program to jumpout to

jumpout file name, argl, arg2... $$ can pass arguments to the new program
jumpout \expr \x \ q $$ x = do nothing; g or blank = quit the program

The first unit of aprogram mayhave value arguments @ype byte, integer, float, or marker. A -jumpout-
command may or may not pass arguments to a program that either does or doesn't have arguments. It is legal to
pass no arguments to a program whose first unit has arguments, inocabéthese arguments will beero or

zempty. It is also legal to pass arguments to a program whosaerfitshas no argumentslowever, if any
argumentsare passed to program thatacceptsarguments, the number of argumeatsl the numeric/marker

types must match.

If the -jumpout- command cannot execute because the target program doesn't exist, or becasisé ¢netegh
memory, the command will fail and fall through to the next commandzasétturn set as for file operations.

Whenrunning in the"create"environment, the target of the -jumpout- is swrcefile, andthe cT program
will be automaticallycompiled if necessary. Wheamnning in the"execute"environment, the target is the
binary file.

The systenmarker variablezfromprog gives the name of the program thdid a jumpout- to thecurrent

program (zfromprog = zempty this is the firstprogram to execute)You canjump back tothe original
program simply by -jumpout zfromprog-.

execute: Initiating Another Program

The -execute- command initiates another program without halting the current program. The new program is not
connected in any way to the current program, unless the two programs use "sockets" to connect to each other.

241

CONNECTING UNITS & PROGRAMS

NOTE: The -execute- command is currently available only on computers running the Unix operating system.

execute "other.t" $$ equivalent to "ct -x other.t"
execute "graph" $Pstart program "graph"
execute "edittext proghelp" $3 edit file "proghelp”
execute "prdoc ~zz09/zip.d" $Bint a file

execute ml +.data" $$ string expression

The tag of theexecute- commanthay be anything thavould make sense as a "typescript" command. As a
special case, any file named with a ".t" file extension will cause that file txdmited as a cfile. These two
commands are equivalent:

execute "myfile.t"
execute "ct -x myfile.t"

The tag may include several "elements" separated by spaces. For each element, the directory in euniehtthe
cT programresides is examined. the element idound in that directory,the execute- command extends the
name to a full path nam@@.g., "proghelp" might behangednto "/cmu/csw/zz09/myprogs/proghelp”). If the
element is not found in the current directory, it is passed on unchanged.

This procedure ensures that someone using your progithrget the appropriate associatdile or program. If
the source fileandall auxiliary files are moved to a differemtirectory,the execute- commandill still work

properly.
The file name can be built up of literal strings and marker variables:
execute "new"+myfile+version+".t"

Be Careful! If you say -execute"Is"- (Is is a Unix instructionjandyour directory happens to contain fie
named "Is", then the command issued will be the full path name for your "Is" and not the Unix cosimand

If the window size changes (causirthe currentmain unit to bereexecuted)you probably don't want the
-execute- command to be done again, since that would stageqoiadcopy of the new program. The system
variable "zreshape" is useful for avoiding an -execute- after the window changes size.

Example:
unit xexecute
if not(zreshape) $¥eshape not TRUE
execute “Is " + zhomedir
endif
at 50,50
write Look over in your typescript window.
You will see a list of the files in your
home directory.
*
SeeAlso:

File Name Specification (p. 286)
Overview of Sockets (p. 311)

242

CONNECTIONS TO OTHER PROGRAMS

use: Using Library Files

The -use- command specifies the name of a file whose contents vinitlbded aspart of thecurrent program.

This makes it possible to share routines among multiple cT programs. For example, a series of programs about
astronomycould all refer to asingle file containing a map of the heavens. Then, if the mapodified, all

programs would see the new map.

use "filename"

The -use- command must be in the IEU (ih&al entry unit). Whenthe program isxecutedthe IEU of the
originating program is executed, followed by the IEU of each of uke-dfiles. A program mayhavemultiple

-use- commands. Also, a -use-d file may contain a -use- comimaindjse-s maynot benestedmore than 10
deep.

The global variables declared in the IEU of a -use-d file are local to that file, except for named groups that can be
referred to by'merge,name" in another file/ariable values may also bexchangedbetweenfiles by using
argumented -do- commands.

The -use-command resemblethe linked-library facilities of C and other languagesgachfile has its own
internal variables and its own IEU. Named groups of variables can be shared among all the files.

The $syntaxlevel statements at the beginning of all -use-d files must be the same.

It is very useful to be able to look at or change -use- files while working on the main program. The "Auxiliary
file" option on the File menu lets you edit other files while maintaining control of the main source file.

Example:

This example uses five separate files to illustratehibearchy of use-dfiles. The basic program is iKuse.t.
There ardour subsidiary files: usedl.t, used2geper.tand stilldeeper.t. (This is a purposetpmplicated
example. A more normal situation would be a "base" file with one or two -use-d files.)

The variable naméqgqq" was intentionallyused in severdiiles to illustrate that these variablese indeed
independent. Such duplication is certainly nretommendegrogrammingpractice! Also note the use afroup
definitions and merge operations.

Notice how an embedded carriage return, <|cr|>, is used to move down one line after each comnmmeake$his
a nice display without requiring a lot of -at- commands.

If you executed the program below, you would get this output:

Hello, this is the IEU of "Xuse.t"
More in the IEU of "Xuse.t"

This is the IEU of "used1.t"

IEU of "deeper.t"

IEU of "stilldeeper.t"

IEU of "used2.t"

county=79, addl1 shows (a+b) =3
Hello from "stilldeeper".

In "usedl.t", qgqqg =1

In "used2.t", qqq = 2.371

This is unit zip in deeper.t.
Back in "Xuse.t", qqq = 55

243

CONNECTING UNITS & PROGRAMS

Stored infile Xuse.t

$syntaxlevel 2

at 20,20
write Hello, this is the IEU of "Xuse.t" <|cr|>
use "usedl.t* $$ make available routines inditedl.t
use "used2.t* $$ make available routines indited2.t
define i: gqaq $3nake qqg available in this file
write More in the IEU of "Xuse.t" <|cr|>
unit usexample
merge,global:
merge,mapvars: $$ definedusedl.t
calc gqq:=55 $Bssign a value to qqq for this file
write county=<|s,county|>, $$ from mapvars group
do add1(1,2) $$rom usedl.t
do something $$ from deeperstill.t
do showl 3 from used1.t
do show2 3 from used2.t
do zip $$ from deeper.t
write Back in "Xuse.t", qqq = <|s,qqq|> <|cr|>

*kkkkkkkkkkk

Stored in fileused1.t

$syntaxlevel 2

define b: qqq $3his qqq valid only in used1.t
group,mapvars: $$ a named group
i; state, countycity

* Cannot reference group variables directly in the IEU, so do this:

do setup $3 initialize some group variables
* here is a -use- inside a -use-d file:
use "deeper.t" $$ make available routines in file deeper.t
*
unit setup
merge,b:
calc qqq:=1
county :=79
write This is the IEU of "used1.t" <|cr|>
*
unit addi(a,b) $8ises values passed from Xuse.t
i:a,b
write add1 shows (a+b) = <|s,a+b|> <|cr|>
*
unit showl
write In "usedl.t", qqq = <|s,qqq|> <|cr|>

*kkkkkkkkkkk

Stored in fileused2.t

244

$syntaxlevel 2

define f.goq $%his valid only in used2.t
calc qqq =2.371
write IEU of "used2.t" <|cr|>

CONNECTIONS TO OTHER PROGRAMS

*

unit show?2
write In "used2.t", qqq = <|s,qqq|> <|cr|>

*khkkkkkkkkkkk

Stored in filedeeper.t

$syntaxlevel 2
* here is a -use- in a -use-d file inside a -use-d file :

use "stilldeeper.t" $$ get routines from stilldeeper.t
write IEU of "deeper.t" <|cr|>

*

unit zZip

write This is unit zip in deeper.t. <|cr|>

*khkkkkkkkkkk

Stored infile stilldeeper.t

$syntaxlevel 2

write IEU of "stilldeeper.t" <|cr|>
unit something
write Hello from "stilldeeper". <|cr|>
SeeAlso:
File Name Specification (p. 286)
define Global Variables and Groups (p- 193)
do Calling a Subroutine (p. 224)
IEU The Initial Entry Unit (p.227)

245

CHARACTER STRINGS
7. Character Strings

Introduction to Strings

A "string" is a series of characters, such ldsllo there!" or "¢ +3x + 7." In cT such a string may involve
styles such as bold or italics, or may even contain images or Japanese charaateesl Webeable tomanage
such complex text--to store, display, and manipulate it. For this task, cT uses vargibl¥string markers,"
or more simply "markers."

A block of newtext can be created in computer memory with -calc- or -string- (arsbyg datain- toreadtext
from a file):

define marker: newtext, m1, m2 $$ define "marker" variables

calc newtext := "The handsome horses" $$ create a new block of text
or

string newtext $Falternative form, similar to -text- command

The handsome horses
\

After this new text habeencreatedthe marker variable "newtextracketsthis newtext. That is, themarker
points to the location in computer memawperethe text startandalso to the location in memomyhere it
ends. You can think of marker variable asontaining two pointers, to the staumd tothe end of a character
string.

Other markers can mark subsections ofsamenew text. Usingmarkerfunctions such agsearch tgosition
markers m1 and m2, we could have marker variable m1 bracket the"simisome'andhave marker variable
m2 bracket the string "horses™:

The handsome horses
[.....m1....]]..m2.]

The marker m1 points to the beginning and end of "handsantgharker m2points to the beginningnd end

of "horses". There is aeplace- commantbr changing the contents of a region of teracketed by a marker

variable. Suppose we replace the text in memory that is bracketed by m1 with different text, "galloping black™:
replace m1, "galloping black"

The markers automatically adjust themselves as follows:

The galloping black horses
[ceenennen mil......... | [...m2..|

Note how mlexpanded taoverthe nodified text, and how m2 moved tothe right to continue tdracket
"horses". Also, the originaharker variablenewtextexpands to coveihe entiremodified text (“The galloping
black horses"). This trackinigehavior is thaeason forcalling these variablesnarker” variables. Theymark
regions of text, and they continue to mark those regions even if changes are made in the underlying text.
Now consider what happens if you use -calc- (or -string-) with m1.:

calc m1 :="cats and dogs"

246

INTRODUCTION TO STRINGS

This -calc- creates a new block of text in computer memory, bracketedl pgind completely distinct from the
still-existing block of textbracketed bynewtext. It alsobreaksthe connection that maised tohavewith the
first block of text. The important point toeep in mind isthat <calc- and string- createnew blocks of text,
whereas the -replace- commanddifiesa section of text that is bracketed by a marker variable.

If, in addition, we use newtext and m2 in -calc- or -string- commands, creating third and fourth distinct blocks of
new text, thereare nolonger anymarker variables bracketingny portion of the original textlealing with

horses. When the last connection is broken, cT recognizes that the original text is nadzegsibleand frees

up that portion of computer memory to be used for other purposes.

Marker variables are designed to serve two types of needs. To do simple tasks such as recording and re-displaying
a person's name, the commands used are straightforward and Jingpéearemore sophisticated operations for
complex string handling, which many useesverneed tolearn. The simple operatiomse discussed under the

general heading of "Basic Markédperations." More complex operatiorse discussed under "Marker
Commands" and "Marker Functions", and "Some Examples Mitkers" providesextendedexamples such as
alphabetizing a list or plotting expressions contained in marker variables.

SeeAlso:
Basic Marker Operations(p. 248)
Marker Commands (p. 259)

Marker Functions (p. 264)

Some Examples with Markers (p. 277)

arrow Soliciting a Response (p. 159)

calc Assigning a Value to a Variable (p. 200)
compute Storing and Evaluating Inputs 1p5)
Defining Variables (p190)

247

CHARACTER STRINGS
Basic Marker Operations

Defining Marker Variables

A marker variable brackets a section of complex text, which can include simple ASCII characters, styles such as
bold oritalics, characterdrom other Latin alphabetdapanese characteemdimages. It isdefinedwith the
keyword "marker" or "m":

define marker: m1, m2, m3
m: names(50) $$ array of 50 names

Markers do not have a fixed length. When a marker is first defined, it has a length of zero. Wheadded te
the marker, it grows as needed.

In an array of markers, each element (each marker) in the array has its own length, which can indzesser
as text is added or removed from the marker.

Markers may be defined locally:

unit something
m: temp1l,temp2

SeeAlso:
Defining Variables (p190)

string: Text in a Marker Variable

The -string-commandstores text in anarkervariable. This resulting textan be displayed, manipulated, or
stored in a file.

string ml

The -string- command allows complex text
to be stored in a string. The text can include
carriage returns and tabs. Embeds such as
<|s,3+X|> or <|s,m2|> are permitt&tyles
such as bold and italic are allowethere

can even be images in the "text."

\

The first line of the tag (on the same line as the command) is the nvariadslethat will bracketthe new text
created bythis -string-command. If themarker is alreadyassociatedvith an existing block of text, that
connection is broken. The text that will bred incomputer memory begins on the line immediatejow
the command itself. The text is terminated by a backslash at the beginning of a line. Tdred badkslash are
not indented, even if the (indented) -string- command is inside an -if- or -loop- or -case- structure.

The text is stored in computer memory and the string mankkés made to point to the beginnimgdthe end
of this text. The markenl brackets the text. Later in the program, marker functeamsbe used tonovem 1
so that it only brackets a portion of the text. However, the base text remains intact andevedsed sdong
assomemarker points asomeportion of the text. Ithereare nomarkersthat point to thebasetext, it is no
longer accessible, and cT will reuse the space for other purposes.

248

BASIC MARKER OPERATIONS

The -string- command and tlodosely related text- commandire the onlycommands in cT that do nédllow
the pattern of command-at-the-left and tag-field-after-a-tab.

The -string- command allows styles such as centered, bold, and italic:
string ml
The -string- command
This is an example of @mplex stringincluding centered and italic text.
\

A string may also balisplayedwith an embeddedshow commandthat is enclosed in astyle. Themarker
contents appear on the screen in the enclosing style:

write <|s,;m1]> $$ note the italics

If a double-dollar ($$) is included in the body of a -string- command it is treated as partstfingenot as the
beginning of a comment.

Example:
unit xstring
m: markerl
string markerl

Four-score and seven years ago,
our forefathers brought forth

on this continent a new nation . . .
\

at 40,50; 240,150
show markerl
at 40,120; 240, 250
write The Gettysburg Address starts: <|cr|>
<|s,markerl|> $$ note the italics
SeeAlso:
text Putting Text on the Screen (p. 39)

calc: Simple Marker Calculations

The -string-command creates whole paragraph ottext and wraps a markearoundit. Short text strings,
including styles such as bold or italic, can be created with a -calc- statement. The -calc- commandésl dtso
concatenate the contents of two marker variables and to equivalence one marker with another marker.

calc s1 :="Hello"$$ assign text
calc s2 :=m1+m2+<|s,Pl|> $Boncatenate; embeds permitted
calc s3:=s2 $$ s8quivalent to s2

When assigning new text to a marker, the text must be enclosed in quote marks:

calc m1l := Welcomedo Carnegie Mellon"
calc m2 := "University"

249

CHARACTER STRINGS

Spaces inside quotamarks, such as thepace before 'University" are significant. Otherspacesare not
significant. Both markers and constant ("literal") strings can be concatenated using a plus (+):

calc m3:=ml+m2
calc m4 :="Purdue" + m2

The concatenation operatieneatesnew text. The marker m3now contains the textWelcometo Carnegie
Mellon University." The marker m4 contains "Purdue University." The four markets,m2, m3, andm4,
bracket four different strings in memory.

You canuseembeddedlisplay commandandthe embeddedorms <|quote|>double-quotes)<|cr|> (carriage-
return), and <|tab|> (TAB): "Purdue"+<|tab|>+"Indiana, " + <|s,year|> + <|cr|>

When the -calc- command is used with literal strings ocalacatenatéwo markers, new text isreated. When
the -calc- command is used to assign one marker to another markerarttexs become equivaletitiat is, the
two markers point to theamestring.

calc markerl := "Thereeis green."
marker2 := markerl

Now marker2 brackets treame stringhat markerl brackets. No new text has been created.

SeeAlso:
calc Assigning a Value to a Variable (p. 200)
Defining Variables (p190)

show: Contents of a Marker Variable

The text bracketed by a marker variable is displayed with a -show- command. The eshonand issensitive
to thetypeof variable in its tag, so it treats all variable types correctly. Marker variables may alsedvéth
the embedded form of -show-.

calc m1l :="It is verycold"
show m1l
write <|s,m1|>

Just as show- can handl@umerical expressionge.g., 3x+5), itcan also handle "expressions" ofmarker
variables:

show ml + " in thevinter."
The -show- above displays: Itisry cold during the winter.

The -write-statement below uses an italic st@®und anembedded show- to display initalics. Theentire
embedded form, including the <| |>, is enclosed in the style.

write <|s,m1|>in the winter. $3t is very coldin the winter.

This way of imposing a style on an embedded -show- only works with -write-, -text-, and -string- commands. In
all other embedded -show-s such imposed styles are ignored.

250

BASIC MARKER OPERATIONS

However, when &tyle is imposed on anarker m1l as in<|s,m1|> some styles in m1l may hkaverridden
inappropriately. In complex situations (including thresence obuperscripts or subscripts), the wayh@ndle
this is to use a -style- command to impose the additional style, as seen in the example below.

Example:
unit xshowm
m: m1, m2, m3, m4
m: complex, copycomplex
calc ml :="It is"
m2 =" very"
m3 :=" cold"
at 20,20
write <|s, ml|><|s, m2|><|s,m3|>
at 20,50
write <|s, ml|><|s,m2|x]|s,m2|><|s,m2|>x<|s,m3|>.
calc m4 :=m1+m2+m3
at 20,80
write <|s,m4|> during the winter.
calc complex := "HO and %"
copycomplex := zcopy(complex)
style copycomplex; bold; red
at 20,110
write The string <|s,copycomplex|> has
subscripts and superscripts.
*
SeeAlso:
show Displaying Variables (p- 47)
Embedding Variables in Text (p- 50)
text Putting Text on the Screen (p. 39)

Using Embedded Marker Variables

Marker variables can bembedded inwrite- or -text-statements. Suppose Wwavethe following definitions
and calculations:

define m:m1, m2,A(6)
i: n=22

calc m1 :="yellow"
m2 := "purple”
n:=22

Then the -write- and -text- below both give "l saw a purple cow.
write | saw a <|s,m2[eow.
text 200,200500,500
| saw a <|s,m2|zow.

\

Anycommand that expects a string of characters will accept embeds. Here are some examples:

251

CHARACTER STRINGS

answer There are <|s,n+3|> ships

answer [<]s,ml]> <|s;m2|>] $$ynonyms
exact <|s,ml|>

exactw See <|s,m2|> run

menu <|s,m1|>; <|s,m2|><|t,n,3,2|30meunit
font m1, n $$ no embed needed

icons m1l+<|s,n|>+".cars"

Note thatcommandshat display oraccept typedext, such as -write-, -text-, -menwand answer-, don'take
quote marks, and variablesmust be embedded.Other commands, such as -for#nd setfile-, take string
expressions, so quote marks are needed for literal text and marker variables need not be embedded.

There arespecialembeddor carriagereturn (newline), tab, and quote. The following -showeommandwill
execute a carriage return and a thien display alouble quotemark followed by the contents of midog) and
another double quote mark:

calc m1 :="dog"
m2 := <|cr|>+<|tab|>+<|quote|>+m1l+<|quote|>
show m2 3 cr, tab, "dog"
SeeAlso:
Embedding Variables in Text (p. 50)
text Putting Text on the Screen (p. 39)

zempty: Logical Comparisons with Markers

Strings bracketed by marker variables can be compared using the standard logical operators (<, >, =, <=, >=, and
~=or |=) . The system variableémpty" is a marker of length zero.

The greater-tharand lesser-than comparisomge made according talictionary order".That is, "m1 > m2" is
true if the string bracketed by m1 would come later in a dictionary than the string bracketed by m2.

Examples:
When a marker variable idefined, ithas a length ofero; it is empty. When something isassigned to the

marker, it is no longer empty. In tle@condexample, try assigning variowgords into the variableswordil,
word2, and word3.

unit xzempty
m: mystring
if mystring = zempty
at 30,10
write Now "mystring" is empty.
(Press any key.)
endif
pause
calc mystring := "Hello"
if not(mystring = zempty) $$ note the "not"
at 30,60
write Now it's not empty:

252

BASIC MARKER OPERATIONS

mystring = <|s,mystring|>.

endif
unit xzempty2
m: word1, word2, word3
calc wordl := "cat"
word2 ;= "antelope"
word3 :="ante" + "lope"
at 50,50
write \wordl<word2
\<|s,word1|>is alphabetizedefore<|s,word2|>
\<|s,word1|>is alphabetizedfter <|s,word2|>
at 50, 75
write The variablesvord2 andword3
write \word2 = word3\ are equal.\ are different.
SeeAlso:
Logical Operators (p. 201)

do: Passing Markers
Markers may be passed as arguments with a -do- command.

When a marker or string expression is passedahyeto a subroutine, it is just as thougtale- hadbeenused
to assign the value. Consider this sequence:

do print(5, m1, m2 + m3 *#uns")
unit print(n, s, t)

integer: n

marker: s, t

These pass-by-value operations are equivalent to the following -calc- statements:
calc
'=m2 + m3 + "runs"
In this case, the marker s becomes a copy ofrthkkerm1, pointing at the sameasetext that m1 points at.
The string expression (m2 + m3 + "runs") creates new &xt,themarker t ismade tobracketthis new text.

Executing "calc s := znext(s)" moves the local marker s to point to thechasdcter inthe baseext without
moving the original marker m1.

We could instead pass m1 to samdress

do print(5, m2+m3+"runs”; m1)
unit print(n, t; s)

integer: n

marker: s, t

In this case, the statement "calc s := znext(s)" actually moves the marker m1.

253

CHARACTER STRINGS

SeeAlso:
do Calling a Subroutine (p. 224)
unit Basic Building Blocks (p. 223)

File 1/0O with Marker Variables

Markers can be used with the -readin-, -datain-, and -dataout- commands:

readin file; m1 3 read until end of line
readin file; m1, 11" 3 read until ! encountered
datain file; m1 3 read entire file into m1
dataout file; m1 $$ append m1 to end of file
datain file; m1, count $Pptional character count
dataout file; m1, count 3 optional characiount

The feadin-command rads up to anéhcluding theend of aline (carriagereturn, orcarriagereturn plus line
feed). You can specify some other character string, in which case -resmle-up to anahcluding thespecified
string.

If you don't specify aharactercount, the datain- commandeadsthe entireremainder of arunstyled fileinto
memory and initializes the marker to bracket all of that text. With a styledriagir-cannot beused(it gives
an execution errorgnd datain-readsthe next section of textorresponding tdhe section written to théle
using -dataout-.

If you use -dataout- of a marker to write to an unstyled fdataout-strips out any styles such as italmgld,
superscript, etc.

SeeAlso:
Files, Serial Port, &ockets (p. 285)
readin Read a Line from a File (p. 297)
datain Read Data from a File (p. 294)
dataout Write Data to a File (p. 298)

A File Editor Application (p. 155)

compute: Computing with Marker Variables

Marker variables can be used with a -compute- command to numerically evaluate a function leanhsiased
from the user's input or generated by some other process.

compute y
compute ymyfunction
compute Yy, "sqrt(x)"

The first argument in the tag must be a floating-point, integer, or byte variablse@tmd(optional) argument
is a marker variable or a literal string.

When -compute- has only one argument, the string in the input beéfieofvm) is evaluatechndthe result is

assigned tahe namedvariable. The value ofarrowm can be changed, tallow -compute- tooperate on
arbitrary strings.

254

BASIC MARKER OPERATIONS

When -compute- hasvo arguments, the string in tlsecondargument isevaluatecandthe numeric result is
assigned to the variable named by the first argument.

If the string contains variables, these must have been defined as "user" védigiesiser:) in the IEU of the
same file (initial entry unit preceding the first -unit- command).

The first time a -compute- command is executed, the string is compiled and the cagédadstoredfor later
use (as long as the string isn't changed). Thus, execution of a -compute- in a loop is done very efficiently.

The operation of -compute- is affected by the -speptions noops, novargndokassign.These specifications
are cleared by an -arrow- command but remain in effect across a change in main unit (e.g., with -jump-).

Examples:

NOTE: For both of the examples, thariable"x" (which is theindependentariable inthe examples)must
be in the global -define- in the IEU:

define user:
fi x

In the first example, the function that will hesedfor the -compute- ("myfunction”) is sewith a -calc-
statement. The example is an illustration of the uskfcd that, for small angles, theine of an angle is
approximately equal to treizeof the angle, expressed in radians.

unit mxcomputel
merge,global:
m: myfunction
f: value
i: angle
calc myfunction := "sin(x*DEG)"
at 45,20
write degrees radians sine
at 50,50
loop x:=0,705 $$x=0,0.5,1, 1.5, etc.
compute value, myfunction
write <|t,x,1,1|><|t,x*DEG,5,4|><|t,value,5,4|><|cr|>
endloop
*

The example below allows the userdntertwo functions of x. Both functionsre then evaluatedfor some

random value of "x". Note that theuser-enteredfunctions are copied into "fnl" and "fn2" using

zcopy(zarrowm).
unit mxcompute2
merge,global:
m: fnl, fn2
f:yl, y2
at 50,20
write Enter a function of x:
yl=
arrow zwherex+10, zwherey
compute yl $$ trial evaluation of response
ok zreturn $FTRUE if response is well formed

255

CHARACTER STRINGS

endarrow
calc fnl := zcopy(zarrowm) $$ save copy of response
at 50,60
write Enter another function:
y2 =
arrow zwherex+10, zwherey
compute y2
ok zreturn
endarrow
calc fn2 := zcopy(zarrowm) $$ save second response
randu X $$select a random value for x
compute vyl fnl $$ evaluate fnl with selected value of x
compute y2, fn2 $$ evaluate fn2 with selected value of x
at 40,120
write For x = <|s,x|> $$ show selected value of x
<|s,fnl|> is <|s,y1|> $$ function values
<|s,fn2|> is <|s,y2|>
SeeAlso:
compute Storing and Evaluating Inputs 1p5)
znumeric Extract Number from Marker (p. 272)
zcode String to Integer Conversion (p. 265)
arrow Soliciting a Response (p. 159)
calc Assigning a Value to a Variable (p. 200)
IEU The Initial Entry Unit (p. 227)
Defining Variables (p190)
User Variables (p. 198)
specs Specifying Special Options (p. 169)

zarrowm: Markers at an - arrow-

The user's input at an -arrow- is automatically bracketed by a system marker variablezaabeai”.

Most system variables can only be examinedzhatowm can be modified. This allows two useful operations
at an -arrow-: the "response buffer" can be filled so that it appears that the user has already typedraioinput
the user's response can be modified before it is seen by an -answer- or some other response-handling command.

To prefill the response buffer, a string is assignerhtoowm with indented statements immediately following
the -arrow-. These statements are execatdg upon entry into tharrow region (theareabetween -arrow- and
-endarrow-). If the response is judged "no", execution starts again at therfiistdenteccommand.

arrow

answer
answer

150,150

calc zarrowm := "sunshine"
rain

sunshine

To modify the user's response, use -replace- or -append-.

replace zlast(zarrowm), "s!"
append zarrowm, "ing"

256

BASIC MARKER OPERATIONS

The -arrow- command initializesarrowm as though you had safdalc zarrowm :=zempty". This breaks the
connection with anynarker variablegpreviouslyassigned tarrowm. This initialization is alsgperformed
when -judge rejudge- or -judge ignore- is executed, and for each new response at the same -arrow-.

Examples:

In this example the user may type anything at all, so any response at all is -ok-. The response éidnach is
in zarrowm) is concatenated with "hello" and an explanation mark and displayed. Notice the comnspacel a

after "hello".

unit

at

write
arrow

ok
endarrow
show

*

xzarrowm1

50,50

What is your name?
75,75

"Hello, " + zarrowm + "I"

In the second example, the user's response is repeated three times into "letters" and then displayed.

unit

at

write
arrow

ok
endarrow
calc

at

show

*

Xxzarrowm2

m: letters

50,50

Type something (short):
75,75

letters := zarrowm + zarrowm + zarrowm
50,100
letters

The next exampl@retends to be an -arrowbut the usemdoesn'tneed to doanything. The presszk(next)-
initiates judging; the indented -calc- fills the response buffer as if the user had typed soraethihg;replace-
fixes the misspelling so that the response is "ok". Notice that the internal version of the respbasged to
"cow", but that the response on the display is still "coy".

unit
at
write

arrow
replace
answer

endarrow

*

SeeAlso:
arrow
zarrowsel

xzarrowm3

50,50

What animal provides
most of our milk?

100,100
calc zarrowm := "coy"
press zk(next)
zlast(zarrowm), "w"

cow
write Moo!

Soliciting a Response (p. 159)
Selected Text at an -arrop. 258)

257

CHARACTER STRINGS

zarrowsel: Selected Text at an - arrow-

The systenmvariablezarrowsel is a marker on mouse-selecteat within zarrowm, theinput at thecurrent
-arrow- command.

Example:
unit xarrowsel
at 10,10
write Type something, then select part of your text
with the mouse, then press Return:
arrow 10,50
show zarrowsel
endarrow
SeeAlso:
arrow Soliciting a Response (p. 159)

zarrovm Markers at an -arrow- (p. 256)

258

MARKER COMMANDS
Marker Commands

append: Adding Characters to a String

The -append- command is used to append characters to the end of text bracketed by a marker.

append string, " and two cups of coffee"
append ml, m2

The first argument of the tag must be a marker variable. The second argument may be a marker variable, a literal
string, or an "expression” (concatenation) of markers and literal strings.

The string in the second argumentjgpended tdhe end ofthe textbracketed bythe first marker. Theppend
operation is like a "Paste" in that the appended string (m2) has its own styles, not the styles of the string being
appended to (m1).

All equivalent markers are extended to inclibde newtext. Other markersare extended ithey startbefore the
append positiomnd end at oafterit. If they begin at obeyondthe appendposition, theyare moved sdhat
they continue to bracket the same characters they used to bracket.

If you say appendzend(ml), m2-the marker m1 isnormally not extended tdnclude the newtext, because
zend(m1l) is considered to b#er m1. You can use zbase(m1l) to include the text that has been appéadéade
end. Similarly, if you say -append zstart(m1), m2-, the marker m1 is nornwllgxtended tancludethe new
text, because zstart(ml) is considered tbdferem1. Again, zbase(m1) includes the new text.

You canuse a -stickycommand to makénhe ends of a marketsticky," in which case an -append- command
involving either zstart(marker) or zend(markaopsextend the marker to include the new text.

Example:
unit xappend
m: ml
calc m1l :="one"
append m1, " two" $$ note the initial space
append m1l, " three"
at 20, 30
show ml
SeeAlso:
calc Simple Marker Calculations (p. 249)
replace Replacing Characters in a String (p. 259)
sticky Make Marker Ends Sticky (R61)

replace: Replacing Characters ina String

The -replace- command replaces the characters bracketed by a marker variable.

replace ml, m2
replace string, "something else"

259

CHARACTER STRINGS

The first argument of the tag must be a marker variable. The second argument may be a marker variable, a literal
string, or an "expression" (concatenation) of markers and literal strings.

The -replace- commarfirst appends th@ew text at theend ofthe marker, adjusting thmarkers inthe same
way that the -append- command does. The replace operation is like a "Paste" in that the resulting string (m2) has
its own styles, not the styles of the original str{rl).

After appending the newext, the replace- command deletdse old characters athe beginning of thenarker.
Any other markers in this deletion region shrink accordingly.

If you say replace zend(m1), m2the marker m1 isnormally not extended tdanclude the new text,because
zend(m1) is considered to bffer m1. You canusezbase(ml) to includthe text that habeenplacedafter the
end. Similarly, if you say -replace zstart(m1), m2-, the marker m1 is normallgxtended tancludethe new
text, because zstart(ml) is considered tbdferem1. Again, zbase(m1) includes the new text.

You canuse a -stickycommand to makéhe ends of a marketsticky," in which case a -replace- command
involving either zstart(marker) or zend(markeogesextend the marker to include the new text.

The functions zeditsel(zedit), zeditvis(zedit), zhotsel(zedit), and zedittext(zedit) canrsaichdirectly ashe first
argument in a -replace- command, to change text in an edit panel. Instead, you must first msslgr 0 the
region, then use that marker in the -replace- command, as follows:

calc m1 :=zeditsel(zedit)
replace m1, "cows"
Example:

unit xreplace

m: ml
calc m1 :="one"
at 20, 30
show m1l
replace m1l, "two"
at 20, 50
show m1l

*

The next example builds phrase bysetting up a skeleton phrase, assignmarkers to each appropriate
position in the phrase, and then replacing each marker with a word. The markers belong to the ssimeghase
but they markdifferentregions of the basstring. Todisplay the entire basstring, zbase can be used. Note
that zbase(noun) = zbase(adjective) = zbase(adverb) = phrase.

unit xreplace2
m: phrase, adverb, adjective, noun

calc phrase :="1 2 3" $$ three items separated by spaces

calc adverb := Zfirst(phrase) $$ackets "1"
adjective := znext(znext(adverb)) Backets "2"
noun := zlast(phrase) $$ brackets "3"

replace adverb, "very"

replace adjective, "small"

replace noun, "house"

at 20, 30

show zbase(noun) $8quivalent to phrase

at 20, 50

260

MARKER COMMANDS

show zbase(adverb) $8iso equivalent to phrase

replace adjective, "big"

at 20, 90

show phrase 3 modified phrase
SeeAlso:

calc Simple Marker Calculations (p. 249)

append Adding Characters to a String @69)

sticky Make Marker Ends Sticky (261)

sticky: Make Marker Ends Sticky

The -sticky-commandets you controlwhetherthe ends of markersare "sticky" or not. Thedefault is that
markersare not sticky. An append- or -replacesommandinvolving either zstart(ml) ozend(ml) does not
normally extend the marker m1 to include the new text. Here are the possible forms:

sticky marker $&he ends of this marker are "sticky"
sticky marker, FALSE $$ ends of this marker are not sticky
sticky marker, expression $$ sticky if expression is TRUE

The systemmarker function associatedwith edit panels, zedittext(editvar), is sticky by default. This
facilitates adding additional visible text at the start and end of the displayed text.

Creation of new text by "string m1" or by "calc m1 := "new text" initializesrntiagker to benonsticky. Only
after placing a marker on some text will a -sticky- command make the ends sticky.

The easiest way to understand the issues is to execute and study the example given below.

Example:

unit xsticky

m: mark

calc mark := "little"

replace zstart(mark),"some "

replace zend(mark)," toys"

at 10,10

show mark $$ not sticky; shows "little"

* The entire base text includes everything:

at 10,30

show zbase(mark) $$ shows "some little toys"

* Next do similar operations with a sticky marker.

calc mark := "big" $$ new initial text

sticky mark $$make "mark" sticky

replace zstart(mark),"fancy "

replace zend(mark)," cars"

at 10,50

show mark $$ shows "fancy big cars"
SeeAlso:

calc Simple Marker Calculations (p. 249)

append Adding Characters to a String @69)

replace Replacing Characters in a String (p. 259)

261

CHARACTER STRINGS

style: Assigning Styles to Markers
The -style- command lets you assign styles to text bracketed by markers:
style m1; bold; italic $$ make marker m1 bold and italic

* Make marker m2 bold if exprl is TRUE, italic if expr2 is TRUE:
style m2; bold, exprl; italic, expr2

Here are thestyles thatcan be appliedust as though yothadused amenu option to apply sudtyles(this
means, for example, that applying an italic style to italicized text removes the italics):

plain, plainest, bold, italic

superscript, subscript, bigger, smaller

full justify, left justify, right justify, center

black, white, red, green, blue, yellow, cyan, magenta
serif, sans serif, fixed, symbol

hot, icon

You can also replace a section of a marker with a pixel image containedreeavariable. One of the uses of
this capability is to prepare a marker containg text and pixel graphics for direct printing.

style m1; screen, screen variable

The functionzhasstylémarker, bold) is TRUE if any text in the markerbisld (otherwise it is FASE). The
styles that can be checked for are the same as those given above.

If the style is "hot" you must also provide the text of the associated "hot" information:

style m1; hot, "This is the hot information”
style m2; hotm3+<|s,2x+y|>

The "hot" style cannot be assigned to an empty (zempty) marker,tsa@reewould be no way tdouble-click
such a region.

Conflicting styles override each other in order, left to right:
style m1; green; red 3 text will be red
The "plain” and "plainest" styles are assigned first, no matter where they are listed in the statement:
style m1; green; italic; plain $$ text will be just green and italic
If the style is "icon" you must also provide the name of the icon file, and a list of icon numbers:
style marker; icon,icon file name,icon number(s)
The functionznicongmarker) returns the number of iconontained inthe specifiedmarker. The function
ziconcodémarker, N) returns the icon number for the Nth icon inrtfagker (equivalent téhe argument of a
-plot- command). The functiomiconfile(marker, N)returns a markecontaining the name of the icoffite
from which the Nth icon come®quivalent tothe argument of an -iconsemmand). If there is ndlth icon,

eitherziconcoddmarker, N) orziconfile(marker, N) gives an execution error, so you should ingick how
many icons there are by usimgicongmarker).

262

MARKER COMMANDS

Examples:
unit xstyles $$ run through many -style- manipulations
edit: ed
marker: text, ¢
i: nn
calc text := "Setting styles"
edit ed; 10,10; 250, 65; xhot; text; editable; frame
calc c :=zfirst(text)
loop nn:=1,3
style C; superscript
style \'nn-2\c; red\ c; green\ c; blue\
pause 0.5
style c; plain $$ remove the superscript and color
calc ¢ :=znext(c)
endloop
* make "Sett" bold and red:
style zextent(zstart(text),c); bold; red
pause 0.5
append text, <|cr|>+"Double-click théaalicized word$'
pause 0.5
calc c :=znextline(zstart(text)) $$ first line of text
style c;center
calc ¢ :=zsearch(text,"italicized words")
style c; hot, "You double-clicked on me!"
at 25,70
write zhasstyle(c,italic) = <|s,zhasstyle(c,italic)|>
*
unit xhot 3 handle hot text
erase 20,100; 300,150
at 30,100
write Selection is [<|s,zeditsel(zedit)|>].
Hot selection is [<|s,zhotsel(zedit)|>].
Hot info is [<|s,zhotinfo(zedit)|>].
*
unit xembedicons $$ embed icons in a marker
marker: circle
style circle; icon,zicons,70,69,68 $$ three filled circles
at 10,20
show "Filled "+circle+"circles"
*
SeeAlso:

Scrolling Text Panels (p. 149)

A File Editor Application (p. 155)

zhasstyle Check What Style Is on a Marker 2B7)
Printing (p. 14)

263

CHARACTER STRINGS
Marker Functions

Comment

The markerfunctions in this sectioare coverealphabetically, but if yowarejust starting to use markers, it
will be easier if you study them more or less in this order:

zstart, znext, znextline, znextword, zcopy
zfirst, zlast, zend, zprevious, zbase
zchar, zcode, znumeric

zextent, zsearch

zaltered, zprecede, zsamemark

zlength, zlocate, zsetmark

zhasstyle, zhotinfo

znicons, ziconcode, ziconfile

zaltered: Changed Marker Flag

The functionzaltered is used to check whether a marked region has been affected by a change to an intersecting
marked region. It returns either TRUE or FALSE. When a markalttéseddirectly, zaltered(marker) is set to

FALSE. When a marker is altered because an acti@motiher markerhasaffectedthe regionbracketed bythis
marker,zaltered(marker) is set to TRUE. The act of examinirgjtered causes it to beet to FALSE.That

is, reading the marker clears it.

Example:
The first -calc- statement modifies m1 directlyereforethe first zaltered(ml1) is FALSE; noindirect change

has been made to m1. The second -calc- statement makpsimizo the firstcharacter othe string m1. The
-replace- modifies m2 aras a resulimodifies m1. Thereforealteredml) is TRUE.

unit xzaltered
m: ml, m2
calc m1 :="abcde" $$ m1l directly modified
at 50,30
write ml is<|s,ml1|>
zaltered = <|s,zaltered(m1)|>
calc m2 :=zfirst(m1)
replace m2,"x" $$ mlindirectly modified
at 50,100
write m1l isnow <|s,m1|>

zaltered = <|s,zaltered(m1)|>

The act of reading it modifies zaltered:
zaltered = <|s,zaltered(m1)|>

264

MARKER FUNCTIONS

zbase: The Entire Base String
Text created with -calc- or -string- is called Hasestring. It is stored incomputer memorandcan always be
retrieved sdong assomemarkerpoints tosomepart of the string. Thezbasé function retrievesthe entire
string to which a marker belongs. Consider this sequence:

calc m1 :="The sun ishot.”
Now m1 encloses "The sun is hot.", which is called the base string.

m1l := zfirst(m1)

At this point,m1 encloses only "T", and there is no marker at all that encloses the stntige However, the
base string is still available and can be retrieved:

m2 := zbase(m1)

Now m2 encloses "The sun is hot."

zchar: Integer to String Conversion
The function Z2char" operates on amteger. Itcreates a one-charactetring containing thecharacter whose
ASCII value is the integer. The 3haracter codes ithe range of128 to 159 inclusiveare special;zchar of
these integers produces a character whose zcode value is -1 (like zempty).

zchar(97) $%reates "a"

Example:

This little unit displays the ASCII characters numbered 32 through 64.

unit xzchar
i index
at 20,50
loop index := 32,64
write <|s,zchar(index)|>
endloop
*
SeeAlso:
Embedding Variables in Text (p- 50)
zcode String to Integer Conversion (p. 265)
Types of Variables (AL91)

zcode: String to Integer Conversion

The function zcode' operates on a marker variable. It produces an integer iratige 0 to255, which is the
ASCII value of the first character in the string bracketed by the marker variable.

zcode("abcd") $Produces 97

The expression "zcode(zempty)" gives the special value -1.

265

CHARACTER STRINGS

Example:
unit xzcode
m: S
calc S :="abcdgoldfish"
at 50,75
write ASCII value of the first character (<|s,zfirst(S)|>)
of the string "<|s,S|>" is <|s,zcode(S)|>.
SeeAlso:
zchar Integer to String Conversion (p. 265)
znumeric Extract Number from Marker (p- 272)
compute Computing with Marker Variables @b4)
Counting Vowels (p- 279)
Types of Variables (AL91)

zcopy: New Copy of a String
The functionzcopyis used to create a new copy of the text bracketed by a marker.

calc markerl := "The tree is green."
marker2 := zcopy(markerl)

Now marker2 brackets a separate copy of the text "The tree is green." that has no connection to marker1l.
The -calc- command is used to cause two markers to braclsztrttestring.

calc marker3 := markerl
Now marker3 bracketsthe same stringthat markerl brackets. No netext hasbeencreated. Ifthe text

bracketed bymarkerl is changed, markemarker3 is adjusted to brackehe same text, butmarker2 is
unaffected.

zend: After the Last Character

The functionzendmarker) returns a markehat points to azero-lengthstring just after the lastcharacter
bracketed by the named marker.

Example:
unit xzend
m: ml, m2
calc m1l :="This is a string"
calc m2 :=zend(m1) $3ust after "g"
replace m2, " with stuff in it." $$ put phrase into m2
at 50,30
write ml =<|s,m1|>
m2 = <|s,m2|>
at 50,100
show zbase(ml) $®ntire string

*

266

MARKER FUNCTIONS

zextent: Combine Marker Regions

The functionzexteni{markerl,marker2) returnsraarkerthat brackets everything betweend including the
regions bracketed by markerl and marker2.

The twomarkers (markerhnd marker2)must bracket areas othe same bassetring. If the twomarkers are
members of different base stringgxtentgives an execution error.

Example:
unit xzextent
m: ml, m2, m3, m4
calc m1l :="bubble gum is icky"
calc m2 :=znext(zfirst(m1))
m3 := zprevious(zlast(m1))
at 50,30
write ml is<|s,ml1|>
m2 is <|s,m2|> $$ contains first "u"
m3 is <|s,m3|> $$ contains "k"
calc m4 :=zextent(m2, m3)
at 50,100
write m4 is<|s,m4|> 3 all but first & last letters

*

zfirst: First Character of a Marker
The "Zzfirst" function operates on a string. It returns a marker bracketing the first character of the given string.
zfirst(mystring)

The given string is usually a marker variable, but it can be a literal string. If "mystringZzés-dengthstring,
thenzfirst(mystring) returngzempty.

Examples:
unit xzfirstl
at 50,50
show Zfirst("Hello") $$shows "H"
*
unit xzfirst2
m: S
calc S :="pneumonia”
at 50,50
write The first letter of <|s,S|> is <|s, Zfirst(S)|>!

*

zhasstyle: Check What Style Is on a Marker

The functionzhasstyldmarker, bold) is TRUE if any textbracketed bythe marker is bold (otherwise it is
FALSE). The styles that can be checked for are the same as those used by the -style- command.

267

CHARACTER STRINGS

Example:
unit xhasstyle
m: ml
calc ml ;= tiger"
at 10,10
write Italic? <|s,zhasstyle(ml,italic)|>
Bold? <|s,zhasstyle(m1,bold)|>
SeeAlso:
style Assigning Styles to Markers (p. 262)

zhotinfo: Information Associated with Hot Text

The system functiomhotinfo(myedit) returns the information associated with the last click of hot te&tlitn
panel "myedit". Youcan also usezhotinfo(anymarker),which will return the stringassociatedwith that

marker, which need not be in an edit panel. If you alssinfo(anymarker) on anarkerthat has no hotext,

you get zempty. You can also udeasstyléanymarker, hot) to check whethtirere is anyhot textassociated
with a marker. If you usehotinfo(anymarker) on a marker that has more thanmeee ofhot text, you get
all the information, concatenated into one string.

Example:
unit xhotinfo
m: ml1, m2
calc m1 :="the quick brown fox"
m2 := zsearch(m1, "quick")
style m2; hot, "A synonym for fast"
at 10,10
show zhotinfo(m2)
*
SeeAlso:
Scrolling Text Panels (p. 149)
style Assigning Styles to Markers (p. 262)

zhasstyle Check What Style Is on a Marker 207)

ziconcode: Icon Code in a Marker

The functionziconcoddmarker, N)returns the icon number for the Nth icon in the thrdcketed by the
marker (equivalent to the argument of a -plot- command).

Example:
unit xiconcode
marker: circle
style circle; icon,zicons,70,69,68 $$ three filled circles
at 10,20
show "Filled "+circle+"circles"
at 10,60
show ziconcode(circle,2)

268

MARKER FUNCTIONS

SeeAlso:
style Assigning Styles to Markers (p. 262)
znicons Number of Icons in a Marker @r2)

ziconfile: Icon File in a Marker

The functionziconfile(marker, N) returns a marker containing the name of the icons file from which the Nth
icon comes (equivalent to the argument of an -icons- command).

Example:
unit xiconfile
marker: circle
style circle; icon,zicons,70,69,68 $$ three filled circles
at 10,20
show "Filled "+circle+"circles"
at 10,60
show ziconfile(circle,2)
*
SeeAlso:
style Assigning Styles to Markers (p. 262)
znicons Number of Icons in a Marker @r2)

zlast: Last Character of a Marker

The 'zlast' marker function operates on a string. It returns a one-character string containing the last character of
the given string.

zlast(mystring)

The given string is usually a marker variable, but it can be a literal string. If "mystringZeés-dengthstring,
thenzlast(mystring) returnzempty.

Examples:
unit xzlastl
at 50,50
show zlast("Hello") $&hows "o"
*
unit xzlast2
m: S
calc S :="bouquet"”
at 50,50
write The last letter of <|s,S|> is "<|s, zlast(S)|>"!

*

zlength: Number of Characters ina String

The zlength function gives the number of elements in @may, orthe number ofcharacters in a marker
variable:

269

CHARACTER STRINGS

unit test
i A(10), B(3, 5)
marker: M(4)

calc M(2) := "hello"

showt zlength(A),6 $$ shows 10 elements in A

showt zlength(B),6 $&hows 15 elements in B (3 times 5)
showt zlength(M),6 $$ shows 4 elements in the M array
showt zlength(M(2)),6 3 shows 5 characters in M(2)

More technically,zlength(M(2)) gives the number ofnext operationsrequired to proceedhrough the
marker.

zlocate: Numerical Position of a Character

The zlocatefunction tells where the start of a marker m is with respect to the start lidsietext zbase(m)
More technically, it gives the number zfext operations required to proceed from the start of the teaseto
the start of the region bracketed by tharker ofinterest. For example, if m ipcated atthe start of itshase
text, zlocate(m)is zero, since nanext operations are required to move to the start of m.

The main use oflocateis associatevith writing text to a file usingdataout-. Ifyou write to anauxiliary

file the zlocate andzlength information formarkers associatadlith this text, the informatiorcan beread
back later and used in tzeetmark function to restore the markers to their original positions on the base text.

znext: The "next" Character

The 'znext' function operates on a string. It returngnarker bracketinghe nextcharacter(of the base string)
after the end of the text bracketed by the current marker.

znext(current)
If the named marker includes the last character of the base stringntiadfturrent) returngempty.
Examples:
In this example, the phrase "The sun is hot.&ssigned tdhe variableS. The functionzfirst(S) is used to
set the variabl€ to the firstcharacter ofS. Then the functiorznext(C) is used tastep through the string,
one character at a time.
Remember that a markberacketssomething (or is a zero-length marker). It points to the begireridghe end

of a string. When the markérencloses the character "T", the next character after that is "lZhewt(C) is a
marker around "h". The -loop- displays each character between vertical bars.

unit xznextl
m: S, C
calc S :="The sun is hot."
calc C =zfirst(S)
at 50,50
loop $$character-by-character
outloop C = zempty
write | <|s,C|> |
calc C :=znext(C)
endloop

270

MARKER FUNCTIONS

znextline: The "next" Line

The "znextline" function operates on a string. It returns a marker bracketing the next "line" (of the base string)
after the end of the text bracketed by the current marker, including the end-of-line character(s).

znextline(current)

A "line" is defined as a sequence of characters ending with and including the end-of-line character or characters, or
ending with the end of the text being searched.

If the named marker includes the last character of the base stringnindfine(current) returnzempty.
Examples:
In this example, a three-line paragraph is assigned to the vaBiafllae functionzstart(S) is used toset the

variableL to just before the firstharacter ofS. Then the functiorznextline(L) is used tostep through the
string, one line at a time. The -loop- displays each line preceded by an asterisk.

unit xznextline
m: S, L
string S

The sun is hot.
The moon is blue.
The grass is green.
\

calc L :=zstart(S)

at 10,20

loop 3 line-by-line
calc L :=znextline(L)
outloop L = zempty
write * <|s,L|><[cr|>

endloop

*

SeeAlso:
readin Read a Line from a File (p. 297)

znextword: The "next" Word

The "znextword" function operates on atring. It returns a marker bracketinnge next"word" (of the base
string) after the end of the text bracketed by the current marker.

znextword(current)

A "word" is defined as a sequence of charaainer than "white space™: spadab, orend ofline. Any initial
white space is skipped, and the result brackets up to, but not including, the next white space.

If the named marker includes the last character of the base stringnthdword(current) returngempty.

Examples:

271

CHARACTER STRINGS

In this example, the phrase "The sun is hot.assigned tahe variableS. The functionzstart(S) is used to
set thevariableW to just beforethe first character ofS. Then the functiorznextword(W) is used tostep
through the string, one word at a time. The -loop- displays each word between vertical bars.

unit

calc
calc
at

loop

endloop

xznextword

m: S, W

S :="The sun is hot."
W :=zstart(S)

50,50

$$word-by-word
calc W :=znextword(W)
outloop W =zempty
write I<|s,W|>|

znicons: Number of Icons ina Marker

The functionznicongmarker) returns the number of iconmntained inthe textbracketed bythe specified

marker.
Example:
unit

style
at
show
at
show

*

SeeAlso:
style
ziconfile
ziconcode

Xnicons

marker: circle

circle; icon,zicons,70,69,68 3 three filled circles
10,20

"Filled "+circle+"circles"

10,60

znicons(circle)

Assigning Styles to Markers (p. 262)
Icon File in a Marker (p. 269)
Icon Code in a Marker (p. 268)

znumeric: Extract Number from Marker

There is a function that picks a number out of a string of characters (a marker expression):

znumeric("abc 10.1 def") returns floating value 10.1

Example:
unit
calc

at

show
*

272

xnumeric
m: ml

m1l :="Pi is 3.14, approximately."
10,10
Dnumeric(m1l)

MARKER FUNCTIONS

SeeAlso:
compute Storing and Evaluating Inputs 1p5)
compute Computing with Marker Variables @n4)
zcode String to Integer Conversion (p. 265)

zprecede: Marker Order

The "zprecedé marker function operates on two markers. It returns TRUE if the beginning of thendirietr
precedes the beginning of the second marker. The function returns FALSE otherwise.

zprecede(m1,m2)

If the two markers refer to different base strings, the function causes an execution error.

Examples:
unit xmzprecede
m: m1, m2, m3
calc m1l :="Where is the rain in Spain?"
at 50,50
write <|s,m1|>
calc m2 :=zfirst(m1) $$ contains "W"
m3 := zlast(m1) $$ contains "?"
at 50,100
write m2 =<|s,m2|>; m3 = <|s,m3|>
at 50,150
write zprecede(m2,m3) = <|s,zprecede(m2, m3)|>
zprecede(m3,m2) = <|s,zprecede(m3,m2)|>
*
unit xmzprecede2
m: m1, m2, m3, m4
calc m1l :="Mainly on the plain."
at 50,50
write <|s,m1|>
calc m2 :=zsearch(ml, "e") $$ find an "e"
calc m3 :=zextent(zstart(m1), m2)
m4 ;= zextent(m2, zlast(m1))
at 50,75
write m2 =<|s,m2|>
m3 = <|s,m3|>
m4 = <|s,m4|>
at 50,125
write zprecede(m2,m1l) = <|s,zprecede(m2, m1)|>

zprecede(m1,m2) = <|s,zprecede(m1, m2)|>

zprecede(m2,m3) = <|s,zprecede(m2,m3)|>
zprecede(m3,m2) = <|s,zprecede(m3,m2)|>

zprecede(m2,m4) = <|s,zprecede(m2,m4)|>
zprecede(m4,m2) = <|s,zprecede(m4,m2)|>

273

CHARACTER STRINGS

zprevious: The "previous" Character

The "zprevious' marker function operates on a stringréturns a marker bracketirige claracterjust before
the beginning of the text bracketed by the current marker.

zprevious(current)
If the named marker includes the first character of the base stringzgr®mnoudcurrent) returngempty.
Example:

This example is exactly analogous to the examplef@xt. It displays thecharacters one-by-one ireverse
order. It starts with the last character in the string and works toward the beginning one character at a time.

unit Xzprevious
m: S, C
calc S :="The sunis hot." $$ make a marker
calc C :=zlast(S) $%racket last character
at 50,50
loop $$ get one character at a time, back to front
outloop C =zempty $$ ncharacters left
write <|s,C|>
calc C :=zprevious(C)
endloop
*

zsamemark: Marker Equivalence

Thezsamemarkmarker function operates on two markers. It returns TRUE if both bracket the same string and
FALSE if they bracket different strings.

zsamemark(ml,m2)

If the two markers point at different base strings, the function causes an execution error.

Example:
unit xmsavemark
m: m1l, m2, m3, m4
calc m1l :="Where is the rain in Spain?"
at 50,50
write <|s,m1|>
calc m2 :=zfirst(m1)
m3 := zlast(m1)
m4 := zfirst(zbase(ma3))
at 50,100
write m2 =<|s,m2|>; m3 = <|s,m3|>; m4 = <|s,m4|>
at 50,150
write zsamemark(m2,m3) = <|s,zsamemark(m2, m3)|>

zsamemark(m2,m4) = <|s,zsamemark(m2, m4)|>

274

MARKER FUNCTIONS

zsearch: Search a String
The zsearch function searches a markdor a givensearchobject. It returns anarker bracketinghe first
occurrence of the search object. If the search object is not fesadych returns a zero-length markpointing
to the beginning of the searched region. $aarchobject may be a literal string or it may baother marker.
Styles such as bold or italic do not affect the search.

zsearch(region to search, string to search for)

Examples:

The first two examples illustrate a successkedrchand anunsuccessful search. In tlsearchthat fails, the
marker is set to the beginning of the searched string, so that the "remaining string” is the entire string.

unit xzsearchl $$uccessful search
m: region, result, rest
calc region := "This is a test of zsearch."

result := zsearch(region, "test")
rest := zextent(znext(result), zend(region))

at 50,50

write \result = zempty\Object not found.
\Object found: <|s,result|>

write <|cr|>Remaining string: <|s,(rest)|>

*

unit xzsearch2 $®insuccessful search
m: region, result, rest

calc region := "This is a test of zsearch."

result := zsearch(region, "zip")
rest := zextent(znext(result), zend(region))

at 50,50

write \result = zempty\Object not found.
\Object found: <|s,result|>

write <|cr|>Remaining string: <|s,(rest)|>

*

The third examplesearchedor double-ells. Notice that "region” ieseteachtime through the loop, so that
"region” is always the unsearched part of the original string. The fourth exeepfdeesall occurrences of "Il
with "LL".

unit xzsearch3 $$ind all occurrences
m: region, result, object
i: count
calc region := "Molly's dolly has yellow braids."
object :="II"
at 50,50
loop
calc result := zsearch(region, object)
outloop result = zempty
write <|s,zextent(zstart(region),result)|> <|cr|>
calc region := zextent(znext(result), zend(region))
endloop
*
unit xzsearch4 $$ find and replace

275

CHARACTER STRINGS

m: region, result

i: count
calc region := "Molly's dolly has yellow braids."
at 50,50
write Original string: <|s,region|> <|cr|>
loop
calc result ;= zsearch(region, "lI")
outloop result = zempty
replace result, "LL"
calc region ;= zextent(znext(result), zend(region))
endloop
write <|cr|[>Modified string: <|s,zbase(region)|>

*

zsetmark: Bracket a Substring

Thezsetmark function places a marker at a particular position within another marker, vpdntiaularlength.
For example,

calc somem := zsetmark(sometext, 7, 3)
makes the marker variable somem start at location 7 from the start wlatkersometext, for a length of 3.
Typically the starting location and length would have been derived from an earlier ziex afe andzlength,

andthe situation usually involveseadingtext from a file with datain-.Note that the start of aarker is
location 0.

zstart: Before the First Character

The functionzstart(marker) returns a marker that points to a zero-length stringog@figtethe first character of
the text bracketed by the named marker.

Example:
unit xzstart
m: ml, m2
calc m1 :="abcdefg" $$ make a marker
calc m2 ;=zstart(m1) 3 marker just before "a"
replace m2,'xyz" 3 put "xyz" into m2
at 50,30
write <|s,m1|> $lisplay m1
<|s,m2|> $lisplay m2
at 50,100
show zbase(ml) $®ntire string containing m1

*

276

SOME EXAMPLES WITH MARKERS
Some Examples with Markers

Reverse a List
This example collects a list of words or phrases and then displays the list in reverse order.

Unit "mx1getwords"loops until theuser presses ENTERithout typing aresponse owntil the maximum
number of entries allowed is reached. When a blank response is found, "mxlgetwords" exits with an -outloop-.

Unit "mxZlreverse" starts at the end of the list and works toward the beginning. (The index on thehdogps
by -1.) The -reloop- skips any empty entries at the end ofigheTry taking out the reloop-; notice how the
positioning changes.

For this example, it is not necessary to pass the display position (xpos,ypos) into the -do-ridowat®r, in
a real program, where these routines may be usedaodeaver, the displayosition will probably bedifferent
for each situation.

unit mx1Reverse List

i: MAX=15 $$ maximum length of list

m: words(MAX) $$ array of words
mxlinstructions

mxlgetwords(50,100, MAX ; words)
mxZlreverse(200,100, MAX; words)

mxZlinstructions
10,10
write List some words.

S *888

When you are finished, press ENTER again,
and | will list them in reverse order.

unit mx1getwords(xpos,ypos, maxlength ; mtemp)
m: mtemp(*) $%array of words
i: Xpos,ypos $$ position of arrow
i: maxlength $$ list length

i index $$ entry number
$3 collect a group of words or phrases
loop index := 1, maxlength
allow blanks 3 blank response okay
arrow Xpos, ypos
specs nookno
ok
endarrow
outloop zarrowm = zempty $$ blank response found
$$ save current response:
calc mtemp(index) := zcopy(zarrowm)
$$ update arrow position:
calc ypos := ypos +15
endloop
unit mx1lreverse(xpos,ypos, maxlength; mtemp)

m: mtemp(*) $$array of words
i: xpos,ypos $$ display positions

277

CHARACTER STRINGS

i: maxlength $$ maximum list length
i index

3 display contents of marker array in reverse order

loop

index := maxlength, 1, -1

$$ go back to -loop- if item is empty:

reloop

endloop

*

mtemp(index) = zempty
3 if marker not empty, display contents:

at Xpos, ypos
show mtemp(index)

3 update display position:
calc ypos := ypos+15

Alphabetize a List

This example gathers a list of words and alphabetizes the words using a very simple sorting routine. Briefly, the
inner loop (i := 2,j) in the alphabetize routine compares two markers: mtemafai)temp(i). If thecontent

of the first marker is "greater than" the content of ¢heond markefcomes later in dictionargrder),then the

two markers are exchanged. In this way the "greatest" word works its way, one steémet ta theend of the

list. On each subsequent pass, one fewer word can be examined, since the "greataéstknown to be at the

end of the list.

The "getwords" routine is similar to the routine in the "reverse a list" example. However, this routine explicitly
counts the number of entries. (Yowst notdepend orthe irdex of aloop for the "count." Refer to the

example with -loop-.)

unit

c *8888

calc
loop

outloop

mx20rderList $dlphabetize a list
i MAX = 15$$ maximum list length

m: word(MAX) $$ array of markers
i count $$ #words entered

mx20rderinstructions
mx2getwords(50,100, MAX; word, count)
mx2alphabetize(count; word)
mx2list(200,100, count; word)

mx2getwords(xpos,ypos, maxlength; mtemp, count)
i- Xpos,ypos $$ position of arrow

i: maxlength $$ maximum # words

m: mtemp(*) $$array of markers

i count 3 number of entries
count:=0

count < maxlength

allow blanks 3 blank response okay
arrow Xpos, ypos

specs nookno $$ no "ok" or "no"

ok $$ any response okay
endarrow

zarrowm = zempty $$ blank response found

$$ increment counter:

calc count := count+1

$$ copy response from arrow buffer into marker

278

calc mtemp(count) := zcopy(zarrowm)

SOME EXAMPLES WITH MARKERS

$$ update arrow position:

calc ypos := ypos +15
endloop
write count = <|s,count|>
unit mx20rderlnstructions
at 10,10
write List some words.
When you are finished, press ENTER again,
and | will alphabetize them.
unit mx2alphabetize(count ; mtemp)
i count $$ number of words
m: mtemp(*) $$array of markers
m: wordl $$ temporary work variable
it i, j 3 loop indexes
loop j :=count, 2, -1
loop =2,
if mtemp(i-1) > mtemp(i)
3 exchange markers:
calc wordl := mtemp(i)
mtemp(i) := mtemp(i-1)
mtemp(i-1) := word1
endif
endloop
endloop
unit mx2list(xpos,ypos, count ; mtemp) BBplay
i: Xpos,ypos 3 display positions
i count 3 number of words
m: mtemp(*) $$array of markers
i index
loop index := 1,count
at Xpos, ypos+15(index-1)
show mtemp(index)
endloop
SeeAlso:
Sorting an Array (p. 213)

Counting Vowels

In this example, the number of vowels (a,e,i,0,u) and semivowels (w, y) in a user's sentence are counted.

unit mx3vowels $$ count vowels and semivowels
m: C 3 marker
i: v, sv, count $$ counters
f: time $$ time spent
arrow 10,20; 350,100 3 user enters a string
ok
endarrow

279

CHARACTER STRINGS

calc time := zclock 3 record starting time
calc v :=sv:=count:=0 $$ initialize counters
C = Zfirst(zarrowm) 3 get first character
loop C ~= zempty $$ exit if no more chars
calc count := count+1
if C="a"| C="e"| C="i"| C="0" | C="u"
calc v = v+l
elseif C="w"| C="y"
calc svi=sv+1
endif
calc C :=znext(C) $$ get next character
endloop
calc time := zclock - time 3 elapsed time
do mx3show(v, sv, count, time)
*
unit mx3show(v, sv, count, time)
i: v, sv, count
f: time
at 50, 75
write Your sentence contained:

<|s,count|> characters

<|s,v|> vowels

<|s,sv|> semivowels
Processing time = <|s,time|> seconds.

For many applications, the executispeed ofmarkers isjust fine. For sizable amounts ofext, marker
calculations can be rather slow if ybave to examine evegharacteione at a time. We hope to improve the
speed, but marke@revery complicated (internallyandthey certainlywill never be agast as integershen
processing dight character-by-charactémop, youcanspeed upyour program byusing integers asliscussed
below. Wheneverpossible, use thesearch or znextline or znextword functions to avoid having to
examine every single character.

This second version of the vowels program usegdbdeandzk functions.These functionproduceintegers,
so the comparisons are done with integers (fast) instead of strings (slow) as in the -if- statement atasee. A -
is used instead of an -if- to illustrate another way the comparison might be structured.

unit mx3vowels2 $$ count vowels and semivowels
m: C 3 marker
i v, sv, count $$ counters
f: time 3 time spent
arrow 10,20; 350,100 $$ user enters a string
ok
endarrow
calc time := zclock 3 record starting time
calc v :=sv:.=count:=0 $$ initialize counters
C = Zfirst(zarrowm) 3 get first character
loop C ~= zempty $$ exit if no more chars
calc count ;= count+1
case zcode(C)

zk(a), zk(e), zk(i), zk(o), zk(u)

280

SOME EXAMPLES WITH MARKERS

calc v = v+l
zk(w), zk(y)
calc svi=sv+1
endcase
calc C :=znext(C) $$ get next character
endloop
calc time := zclock - time 3 elapsed time
do mx3show(v, sv, count, time)

*

Plot Two User Functions Simultaneously

The user is asked to enter two functions. The functions are then plotted "in parallel.fs, Thatach"x" the
values of both functions are displayed. This makes a nice visual effect. (The other choice is to falottamre
completely and then to plot the second function.) The first function is plotted with linesedbiedfunction is
plotted with dots.

The first unit, "mx4graph,” is essentially nothing but calls to other units. Such a wftemscalled a "driver"
unit. Separating each little task into its own unit makes a progracheasier to debug and to maintain.

The continuedorm, gdraw ;x,y-, is oftenusedwhenplotting a function.However,this exampleplots two
functions simultaneously. If theontinued formwereused, the resultvould be, not two distinct lines, but an
envelope of the two functions. The values "oldx" and "oldy" save the podatofrom. If the secondfunction
were also plotted with a line, it would be necessary to save an "odlxP0ldy2". You might changethe line
labeled "$$ plot 1st function” to the form -gdraw ;x,y- and see what happens.

The variable "x" must be a globally defined "user" variable:

define user:
f: x
*
unit mx4graph $$ graph two functions together
m: Fx(2) $%$ array of two marker variables
next mx4graph
do mx4graphsetup $$ prepare graph
do mx4instructions 3 display instructions
do mx4getfunct(1; Fx) $$ get first function
do mx4getfunct(2; Fx) $$ get second function
mode erase
do mx4instructions $$ erase instructions
mode write
do mx4plot(; Fx) 3 plot functions
*
unit mx4getfunct(num; M)
merge,global:
i: num $$ function number
m: M(*) $$ array of markers
f: yvalue 3 value of evaluated function
at 10, 10+15*(num-1)
write Enter a function of x:
arrow zwherex,zwherey; 300, 10+15*num
compute yvalue $$ evaluate user's expression

281

CHARACTER STRINGS

ok zreturn $&heck for valid expression
write \zreturn=7\Your expression should depend on x.\\
endarrow
calc M(num) := zcopy(zarrowm) $$ave function
unit mx4plot(; fn)
merge,global: 3 includes "x"
m: fn(*) $$ array of markers
f. ypos 3 current function value
f: oldx,oldy 3 saved position for plotting
inhibit startdraw $%lon't show first line
loop X :=0,10,0.1
compute ypos, fn(1) $$ evaluate 1st function
color zblue
gdraw oldx,oldy; x,ypos $3 plot 1st function
calc oldx :=x 3 save point for -draw-
oldy := ypos
compute ypos, fn(2) $$ evaluate 2nd function
color zred
gdot X,ypos $Pplot 2nd function
endloop
color zdefaultf
unit mx4graphsetup
gorigin 50, 200
axes 0,-100; 360,100
scalex 10
scaley 5
labelx 1, .5
labely 5,1
unit mx4instructions
at 120,90
write Try equations such as:
exp(x/10)sin(2x)
or 5sin(2x)
SeeAlso:
User Variables (p. 198)
compute Storing and Evaluating Inputs 1p5)
compute Computing with Marker Variables @b4)

Graphing Commands (a02)

Plotting Parametric Equations

This example accepts three parametric equations and plots the resulting graph.

Unit "'mx5GetEQ" gets the equations. The example is written so that sample equations are providecheatil you
to do is press ENTER. The -do mx5provide- executes a unit that puts some suitable example atoatiens
array of equations. The first -calc- (indented after #reow-) inserts theprepreparegquations intathe response
buffer. If you want the user tenter equationggmit the do- andthe calc-. (Notethat evenwith the prepared

responses, you can modify the input before pressing ENTER.)

282

SOME EXAMPLES WITH MARKERS

We allow users of the program to use a sinmggaalsign for an assignmensymbol (:=). Unit "mx5equal”
checks the input and converts a bare "=" into ":=".

The -compute- in "mx5GetEQ" does not affect the graph. It is used to get a vatetuof so theequation can
be checked for validity. In a real program, the -write lllegal form- would probably be a -do- of a diagndstic
(Refer to thezreturn discussion.)

The inner loop of unit "mx5plot" runs through all three equations to find one point for plotting. The outer loop
continues until "Stop Plotting" is selected from the menu.

The "user:" variablesnust bedefined inthe IEU. The program assumes that "run" is also a glehahble.
Although the sample only uses t, x, and y, any single letter caisdzkbythe equations. The IElhight look
like this:

define i:run $$ TRUE while plotting
user:
f.a,b,c,d e f,g hijklm
fn,o0,p, QS tLuv,wxXy,z
font zsans,15
fine 500,350
rescale TRUE, TRUE, FALSE, TRUE
unit mx5graph $$ parametric plotter
m: eqn(3) $$ array of markers
box $$ box active display area
next mx5graph $$ use "Run from Selected Unit"
do mx5axes 3 prepare axes & labels
do mx5GetEq(;eqn) $8et the equations
do mx5plot(; egn) $$ plot equations
at 20,110
write Press ENTER to start over.
unit mx5GetEq(;E) $$ get the equations
m: E(*) 3 local marker array
i index
f: result
do mx5provide(;E) 3 get preprepared equations
loop index := 1, 3 3 let user modify 3 equations
arrow 10,15+20(index-1)
3 indented -calc- loads the arrow input buffer:
calc zarrowm ;= zcopy(E(index))
specs okassign, nookno
do mx5equal(; zarrowm) 3 convert = into :=
compute result
ok zreturn $&heck for valid expression
calc E(index) := zcopy(zarrowm)
write lllegal form.
endarrow
endloop
unit mx5provide(;E) 3 provide some equations
m: E(*)
calc E(Q) :="t=t+.1"

283

CHARACTER STRINGS

E(2) := "x = 5+4sin(2t)"
E(3) :="y = 4cos(3t)exp(-.01t)"
unit mx5equal(; m) $$ This routine replaces = with :=
m: m, c
i: colon
calc c :=zfirst(m) 3 first character
loop ¢ ~=zempty $$ exit if no more characters
if c=""&znext(c) ="="
calc ¢ :=znext(c)
elseif c="="
replace c, ="
endif
calc ¢ :=znext(c)
endloop
unit mx5plot(; egn) 3 does actual plotting
merge,global:
m: egn(*)
i index
f: result
inhibit startdraw
calc t:=0 $dnitialize
run := TRUE
menu Stop Plotting: mx5stopit
loop run 3 use menu to STOP
loop index :=1, 3
compute result, eqn(index)
endloop
gdraw P XY $ext line segment
endloop
menu Stop Plotting $$ remove menu item
unit mx5axes $$ prepare for graphing
gorigin 220,166
axes 0,-115;250,115
scalex 10
scaley 5
labelx 2,1
labely 1
unit mx5stopit $$menu item
calc run := FALSE
SeeAlso:
User Variables (p. 198)
compute Storing and Evaluating Inputs 1p5)
compute Computing with Marker Variables @b4)

Graphing Commands (a02)

284

INTRODUCTION TO FILES
8. Files, Serial Port, & Sockets

File 1/O Introduction

File input/output allows gorogram to store oretrieve data.Files are referred toindirectly using “file
descriptors." The filalescriptor is a variablthat automatically keepsack of essentiaihformation about the

file, such as its length, reading position in the file, whether the file is read-only or read/write, etc. Before using a
file command you must define a file descriptor (see "Defining Variables"):

define file: filedescriptor

File descriptorsmay bedefined asglobal or local variablesHowever, local variables should hesedwith
caution. When a unit is completed, the local variables associated with the unit arargbargy filesassociated
with local file descriptors are closed.

The commands for file operations are

addfile create a new file

setfile select an existing file
delfile destroy a file

setdir select a directory or folder

dataout append data to a file
numout append one number to a file

datain read data from a file

readin read one line of text from a file
xout write 8-bit (binary) bytes

xin read 8-bit (binary) bytes

reset set position within a file

The system variablereturn gives status information about file operations.

The variablezretinf contains the number of elements read by -datain- or -xin-.

The length in bytes of a file is given loyength(file descriptor).

You can usefilename(file descriptor) to get the alphanumeric name of the fiksociatedvith that file
descriptor, andfilepath(file descriptor) is the sequence oficectories or foldergnclosing the file, so that

the marker expressionfilepath(file descriptor)+zfilename(file descriptor) provides the fullhame.

The system marker variableaser andzhomedir contain the user's IRndthe pathname of the user's home
directory.

SeeAlso:

Defining Variables (p190)
File Name Specification (p. 286)

285

FILES, SERIAL PORT, & SOCKETS

File Name Specification

The file naming conventiondiscussed irthis section apply to altommandsthat referencefiles: -addfile-,
-setfile-, -execute-, -font-, -fontp-, -icons-, -pattern-, -cursor-, -get-, -pot,video-. Inmany casesgspecially

when using -addfile- or -setfile-, you reference a file by invoking a file dialog box to choose the file name. But if
you have auxiliary data files that are essentially part of your program, you will exptefelyto those files by

name in your program. This section deals with how to provide the name of the file.

All modern computer systems provide "hierarchical” file storage. Eachdiféetory” or"file folder" contains a
set of related files and may also contadditional directories or folders. To findfiée in an arbitrary directory,
one gives the "full path name," specifying in detail the ertieearchy of directories or folders leading down to
the file of interest. Depending on the system,dbparators between directorieay be slashes (/), colons (),
or backslashes (\).

/cmulcil/jones/public/draw.data
\smith\tutor\physics\wells
volume:correspondence:april:jones

When you refer to a file in your program (e.g., with a -setfimmmand),you should always use slashes (/) as
separators. cT will make the necessary translation from slash to colon or backekstsdary. Notthat this
means thaa cT program cannot reference a file whose name includes a blestuse such a file has a name that
looks as though it containsdirectoryname. Inaddition toalways interpreting a slash on all systems as a
separator, cT also recognizes colon or backslash on systems that use those separators. Howeeparah@ase
will not work with a -setfile- command on a different system, whereas the slash will work on all systems.

The simplest and most common situation is that a cT program specifies a file that is in thirectorg as
the program itself, in whicleasethe full path name is natecessaryonly the file name igequired.Suppose
your program "analyze.t" is in the "public” directory, with this full path name:

/cmu/cil/jones/public/analyze.t

If your program needs to refer to a file named "grafdata” located in the "public” direaitoypu need togive is
just the file name itself, "grafdata”, and cT will look for it in the "public” directory where "analyze.t" is located.

If the file is in asubdirectory "klow" your cT program, the path may start at that level. A file such as
"july.data”

/cmu/cil/jones/public/myinfo/july.data
could be referenced by "analyze.t" as "myinfo/july.data".

You canuse the setdir- command to changhe "current” directory(the one cT looks in)andthe system
variablezcurrentdir gives the name of the current directory.

If the file is in some miscellaneowlirectory unrelated tahe current directory(the onewhere your program
resides, or the directory set by a -setdir- command), the full path-name must be specified:

/ecmul/cil/jones/public/neat.stuff
On a multiuser systenherearefour placeswhere afile may befound: in the directory containing the cT

program, in the usermurrent directory, in a default directory specifiedpast of the user's login, or isome
miscellaneous directory.

286

INTRODUCTION TO FILES

If the file name starts with a dot-slash (./) or double-dot-slash (../), the pexipaadedelative to thedirectory
that was the user's "current directory” when the cT program was initiated.

The tilde (~) is an abbreviation for the user's home directory. For the user "zz09":

~/zip --> /cmu/cil/zz09/zip
~/zonk/B --> [cmul/cil/zz09/zonk/B

The tilde abbreviation with another user's ID specifies that user's home directory:

~aalal/cat --> /cmu/depta/aaOa/cat
~aa0a/subone/dog --> /cmu/depta/aa0a/subone/dog

The file name can be built of a combination of text, marker variables, and embeds. The -setfildodledofer
a file named "newfoo3.seq".

calc myfile ;= "foo"
version := 3
setfile fd; "new"+myfile+<|s,version|>+".seq"; ro

The marker functiongfilepath and zfilename andthe systenmarker variablezcurrentdir provide detailed
information about file names and file locations. The system marker varialdes andzhomedir contain the
user's ID and the pathname of the user's home directory.

SeeAlso:
setdir Select a Directory (R94)
User ID and Home Directory (p- 329)
Defining Variables (p190)
Character Strings (p. 246)

File I/O Errors

It is very important tocheck every file operation for successfulompletion. All commands relating tdile
operations set the system variabteturn. After a successful file operatiomreturn is TRUE. If some kind of
error occurredzreturn has a positive value:

all okay

illegal file variable (should not happen)

file not open (no preceding setfile or addfile)

file not found

file improper type

file code-word error

duplicate file name (file already exists)

file quotaexceeded

catchall error

file directory full

permission denied (wrong directory or need rw)
file in use (cannot be deleted)

directory not empty (directory cannot be deleted)
-dataout- out of range (not at end of file)

file is currently reserved

illegal character read with -datain-

user canceled making a selection in a file dialog box

Heh e RREBoo~vounrwn -

287

FILES, SERIAL PORT, & SOCKETS

18
19
20
21

The abovelist of zreturn values applies to all file operations, but not all possible values appacto
command. For example, for an -addfile- commanty the values -1, 7and 11would beseen. As morefile
operations features become available, the missing values (2, 5, etc.) will be filled in.

Since eachfile operationdepends orsuccessful completion of previous operationgjdésnot make sense to
continue after abad zreturn. The program should give a messagel exit from file operationsafter any

window not wide enough for a file dialog box
not enough memory to create a file dialog box

file operation not supported (e.g. QuickTime not installed)
trying to bring up file dialog box in background window

zreturn that is nofTRUE.

Example:

There are three ways this example may fail: the file MyTestFile may not exist ouitlemt directory; dataout-
won't work unless the -setfile- specifies "read/write"; and if MyTestFile is not emptgset--isrequired before

the -dataout-.

unit xIOzreturn
file: fd

setfile fd; "MyTestFile"; ro $heeds "w"

do ShortZreturnText

reset fd; end $$try with & without the -reset-

do ShortZreturnText

dataout fd; zclock

do ShortZreturnText

unit ShortZreturnText

write \zreturn\\\\file not open \file not found \
\\duplicate file name \\\permission denied
\\-dataout- out of range

SeeAlso:
File 1/O Examples (p. 308)

A File Editor Application (p. 155)

datain Read Data from a File (p. 294)
zreturn The Status Variable (p. 332)
Logical Operators (p. 201)

Conditional Commands (p. 18)

288

FILE HANDLING COMMANDS
File Handling Commands

addfile: Create a File

The -addfile-command creates reew file andopens it withread/write access shat datacan beadded to the
initially empty file. The system variabieturn should be checked to see if the file was successfully created.

addfilefile descriptor; file name (or zempty); styled (optional)

The first argument ofaddfile- is afile descriptorvariable,followed by asemicolon. This filedescriptormust
have been defined as type "file:".

The secondargument is a string expression for the name of the new filthelffile resides inthe "current”
directory (the samelirectory asthe sourcefile, or thedirectory selected by a -setd@emmand),only the file

name needs to be given. If the file resides in the user's directory, théfidemame"is used. If thdile resides
in some other directory, a full path name must be given.

If the file name is an empty marker, a dialog box is opened for the user to choose a filendasd@ectory or
folder to put the file in. You can use the "name" option to initialize the file name in thdiditg box, which
the user can then edit.

An optionalthird argument specifies a "stylefile, either asjust the keyword "styled" or the form "styled,
expr", where the file will be styled if expr is TRUE. Here are specific examples, assuming -define file: fd-:

addfilefd; "filename" 3 create ordinary file
addfilefd; "filename"; styled $3 create styled file
addfilefd; "filename"; styled,expr $8xpr is TRUE oFALSE

addfilefd; zempty 3 invoke dialog box to prompt for file name
addfilefd; zempty; styled $$ dialog box, create styled file

addfilefd; zempty; styled, expr 3 expr is TRUERALSE
addfilefd; zempty; name,"abcd.ef" $$ initalize file name to "abcd.ef"

If you specify that the file is styled, you can use -dataout- to write out markers with styles such as bold or italic.
Every -dataout- of a marker is bracketed in the file by special delimitigdgach -dataininto a markerfrom a

styled file reads one bracketed region, not the whole file. If you execute 5 -dataout-s to a file, yoreabthe

file with 5 matching datain-s. It isillegal to use -xin-, -xout-, orreadin-with a styled file, but note that
znextline(m) can be used to read a line from a marker that has been read from a styled file.

You can usefilepath(fd) andzfilename(fd) to get the full filename:

addfile fd; zempty $$ suppose use chooses file /abc/def/datal
show Zfilepath(fd)+zfilename(fd) $$ "/abc/def/"+"datal"

There are speciaketurn values that apply when a file selection dialog box is invoked (by specifying an empty
file name). If the user chooses in the file selection dialog box to overwrigisting file, the contents of that

file are deleted andreturn is set to -1, ready to write into the file as thoughvére acompletely new file. If

the user cancels making a selectioreturn is set to 17. The window must léde enough to display théle

dialog box; otherwisereturn is set to 18. If there is not enough memorycteate dile dialog box, zreturn

is set to 19. If the execution window is behind other windows, the file dialog box disptayed,andzreturn

is set to 21. Concerning the latter situation, the systarable zforeground is TRUE if the execution
window is fully visible, in front of all other windows.

289

FILES, SERIAL PORT, & SOCKETS

At any time while working with the file, the current number of bytes in the file is givddngth(fd).

After executing an -addfile- command the possible valuesatfirn are

-1 file created
7 cannot create file (a file by that name already exists)
11 permission denied (cannot create file in specified directory)
17 user canceled making a selection in a file dialog box
18 window not wide enough for a file dialog box
19 not enough memory to create a file dialog box
21 execution window is not the forward-most window

Example:

Each example creates a file. Don't forget to delete the test files after you've tried the examples.

This unit creates a file named "TestA" in yauurrent directoryandwrites the contents of tharray "AnArray"
into the file. After running this example, use "Auxiliary file" on the File menu to examine the file contents.

unit xaddfile $Padd file to current directory
f: AnArray(5)
file: td

set AnArray :=1,2,3,45 $$ put values in the array

addfile td; "TestA"
dataout td; AnArray

*

The example abovshows a skeleton unit. In @al application, you should¢heck zreturn after every file

operation. Here is the unit rewritten with checks for unsuccessful operations.

unit xaddfile2
f: AnArray(5)
file: td
set AnArray :=1,2,3,45 $$ put values in the array
addfile td; "TestB"
at 100,100
if zreturn
write File created.
else $$addfile failed
write Cannot create file.
zreturn=<|s,zreturn|>
outunit 3 can't continue file operations
endif
dataout td; AnArray
at 100,125
if zreturn
write Dataout completed.
else
write Dataout failed.
zreturn = <|s,zreturn|>
endif

*

This example puts the new file in yduomedirectory.

290

FILE HANDLING COMMANDS

unit xaddfile3 $%add file to home directory
f: AnArray(5)
file: td

set AnArray := 3,6,9,12,15 $$ put values in the array

addfile td; "~/TestC"

dataout td; AnArray

SeeAlso:

File Name Specification (p. 286)

setdir Select a Directory (R94)

File /0O Errors (p. 287)

File 1/0O Examples (p. 308)

A File Editor Application (p. 155)

Defining Variables (p190)

Character Strings (p. 246)

setfile: Select a File

The -setfile- command sets a file descriptor to an already existing file and opens the file datatteat beread
from or written into the file.

setfile fd; file name (or zempty); ro or rw; styled (optional)

The first argument of -setfile- is a fildescriptorvariable,followed by asemicolon. This filedescriptormust
have been defined as type "file:".

The secondargument is a string expression for the name of the new file. If thaeBides inthe "current”
directory (the samalirectory asthe sourcefile, or thedirectory selected by a -setd@emmand),only the file

name needs to be given. If the file resides in the user's directory, thé fidlemame"is used. If the fileesides
in some other directory, a full path nammeist be given. If the filmame is an empty marker,déalog box is
opened for the user to choose a file.

The third argument is a keyword that specifies the read status of the fil&keylwerd"ro" meansread-only and
indicates that the file will be read but not written. Kaegword"rw" opens the file foread/write.Without the
"rw", the programcanreadinformation from the file, but cannot wriatainto the file. If you specify "ro,
expr" the file will be read-only if "expr" is TRUE, otherwise it will be read-write. Similarly, if you specify "rw,
expr" the file will be read-write if "expr" is TRUE, otherwise it will be read-only.

An optional fourth argument specifies'styled" file, either agust thekeyword"styled" or the form "styled,
expr", where the file will be styled if expr is TRUE. Here are specific examples, assuming -define file: fd-:

setfile fd; "TestA"; ro 3 open read-only
setfile fd; zempty; ro 3 invoke dialog box to choose file
setfile d $$ blank tag to clodée

seffile fd; "TestA"; rw $Fead/write
setfile fd; "TestA"; rw, expr 3 expr is TRUE BALSE

setfile fd; "TestA"; ro; styled $$ open styled file
setfile fd; "TestA"; ro; styled,expr $$ expr is TRUERALSE

291

FILES, SERIAL PORT, & SOCKETS

You can usefilepath(fd) andzfilename(fd) to get the full filename:

setfile fd; zempty; ro $$ suppose file is /abc/def/datal
show Zfilepath(fd)+zfilename(fd) $$ “/abc/def/"+"datal"

The number of bytes currently in the file is givenZbgngth(fd).

There are speciareturn values that apply when a file selection dialog box is invoked (by specifying an empty
file name). If the user cancels making a selectimpturn is set to 17. The widow must bewide enough to
display the file dialog box; otherwisgeturn is set to 18. If there is not enough memoryiteate ile dialog

box, zreturn is set to 19.

If you specify that the file is styled, you can uslatain-and dataout-with markersthat contain styles such as
bold or italic. Every -dataout- of a markerhbsacketed inthe file by special delimitergndeach -dataininto a
marker from a styled file reads one bracketed regioh,the whole file. If youexecutefive -dataout-s to dile,

you would read the filsvith five matching datain-s. It isillegal to use -xin-, -xout-, orreadln-with a styled

file, but note thaznextline(m) can be used to read a line from a marker that has been read from a styled file.

If the tag issimply the filedescriptor(no semicolon), then the fildescriptor is "canceledyhich closes the
file. This makes sure that all the information is senpéomanent (disk) storagadbreaksthe connection to
the file. It is not actually necessary to close a file in this vieegausall files are closedautomatically at the
end of execution of the program. Executing -reset td; end- will make sure tllatadibve beersent to thdile
from the computer's internal buffers, without actually closing the file.

A file descriptor can be reused. Suppose we have these commands (assuming appropriate -define-s):

setfile td; "TestC"; ro
datain td; "AnArray", 7
setfile td; "TestD"; rw

dataout td; AnArray, 7

The first two commands read information from TestC intAkay. The thirdcommandfirst closesTestC and
thenopens TestD. The last command writes the array into TestD.

The possible values afeturn for -setfile- are

-1 file opened
4 file notfound
11 permission denied
17 user canceled making a selection in a file dialog box
18 window not wide enough for a file dialog box
19 not enough memory to create a file dialog box
21 execution window is not the forward-most window

Concerning the situatiomwhere zreturn =21, the systenvariable zforeground is TRUE if the execution
window is fully visible, in front of all other windows.

Example:
unit xsetfile
file: fd $$ define file descriptor
at 50,50
setfile fd; "zonkity"; rw 3 nonexistent file
write zreturn = <|s,zreturn|> (probably 4).

292

at 50,90
loop
setfile fd; zempty; ro 3 invoke dialog box
if zreturn = 18 $$wvindow too small
write Make window bigger.
pause
else
outloop
endif
endloop
write zreturn = <|s,zreturn|> (probably -1).
SeeAlso:
File Name Specification (p. 286)
setdir Select a Directory (R94)
File /0O Errors (p. 287)
File 1/0O Examples (p. 308)
A File Editor Application (p. 155)
Defining Variables (p190)
Character Strings (p. 246)
serial Serial Port (p. 309)

delfile: Delete a File

FILE HANDLING COMMANDS

The delfile- commandemoves the file pointed to by the fikescriptor inits tag. Beforeusing delfile-, you

must execute either -addfile- or -setfile- to specify the file descriptor.

delfile

td

It is possible tohaveread/writepermission to a file without having permission deletethe file. Thus, for

-delfile-, azreturn of 11 means "does not have delete access for this file."

The relevangreturn values for -delfile- are

-1 everything ok
3 file notopen
11 permission denied

Example:
unit

setfile
at
if

endif
delfile
if

xdelffile

file: td

td; "TestA"; rw $$ set file descriptor
100,100

not(zreturn)

write \zreturn=4\ File not found.
\Permission denied.

outunit

td

zreturn

write File deleted.

293

FILES, SERIAL PORT, & SOCKETS

else
write \zreturn=3\File not open.
\Permission denied -- cannot delete.
endif
SeeAlso:
File Name Specification (p. 286)
File /0O Errors (p. 287)
File 1/0O Examples (p. 308)
Defining Variables (p190)

setdir: Select a Directory
The -setdir- command changes the "current” directory or folder:
setdir "~Irik/stuff' $$ later -setfile-s relative to this directory

When a -setfile- command specifies just a file name, that fileolsed for inthe current directory or folder. At
the beginning of a program, liefaultthe current directory ofolder is the onewherethe program itself is
located.The setdir- command changdisis default, sothat later -setfilecommandslook in the newcurrent

directory. The name of the current directory is available in the system marker vaciatentdir .

A major use of setdir- is inassociation with-setfile- commandshat invoke a filedialog box for the user to
choose a file. If the user chooses a file frodtifierent directory, it isusually appropriate to changhe current
directory tomatch that newdirectory, sothat in later usechoices the file dialodpox will start in the new
directory, not the program directory. To achieve this effect, do the following:

setfile fd; zempty; ro $$ bring up file dialog box
setdir Zfilepath(fd) $$ make the new directory the "current” directory

After executing a -setdir- command the possible valuesetfirn are

-1 directory or folder created
4 no directory or folder of this name

SeeAlso:
File Name Specification (p. 286)
setfile Select #&ile (p. 291)

datain: Read Data from a File

The -datain- command reagigormation from ahuman-readabléle (or from the serial port or from a socket).
Just as with the -show- command, the information may be numbers or a text string.

define file: td $$ file descriptor

f. A(10,5) $$ a numeric array

i: value $$ an integer variable

m: m1 $$ a marker variable
datain td; value $$ read 1 number
datain td; A $$ fill numeric array

294

FILE HANDLING COMMANDS

datain td; A,12 $$ first 12 numeric elements
datain td; A(3,6) 3 single numeric element
datain td; A(3,6),5 $$ five numeric elements starting at A(3,6)
datain td; m1 3 read rest of the file into m1
$$ (or next marker region in a styled file)
datain td; m1, 65 3 read 65 characters into m1

The first argument is a file descriptor followed by a semicolon.

The second argument is a variable or an array into which the inplatcisd. Ifthe argument is a numericray
name with no modifiers, the entire arrayréadfrom the file. If thearrayname is followed by @ommaand a
number (N), the next N elements are read from the file. If the argumentisagrelement or a simpleumeric
variable, a single number is read. If the argument isreay elementfollowed by acommaand anumber(N),

then N consecutive array elements are read.

If the second argument is a marker variable, and no character count is specified, the entire remainder of the file is
read into memory and the marker variable is wrapped around that text. If a character count is shatifieahy
characters (or however many remain in the file) are read into memory and the mavkagpied aroundhe text.

See the -readIn- command for how to read one line of text from a file.

If you read from a styled file, each -datain- into a marker can contain styles such as itadld. dgvery datain-
into a marker from a styled file reads one bracketed region, not the whole file.dkgoutefive -dataout-s to a
file, you would read the file with five matching -datain-s.

The system variableretinf tells how many items were actually transferred. Attempting to -datain- at the end of
the file, where there is nonore data, doesot cause a failurezfeturn stays TRUE), butzretinf = 0 (no
information read).

In the case of a numeric -datain-, numbers may be terminated by space, tab, rearrlagereturn), orend of
file. The number of elements read by -datain- is given by the sysenablezretinf. After reading anumber,
the next character in the file is the one that terminated the number. For example, if a nuerpeinéged by a
carriage return, and next you read text from the file, the first character of that text will be the carriage return.

If there issomething wrong with thactualdata inthe file (such as a number containing illeghbracters),
zreturn has the value 16, and the position within the file is set to the pdietethe error was detected. One
could then use -xin- to examine the file byte by byte.

For -datain- the relevant valueszaséturn are

-1 operation successful
3 file notopen
16 illegal character (in the case of numeric -datain-)

A file that is being read numerically can have more than one number on a line, even though thawimapte
form of the dataout- commangutsonly one number on a line. Yarould, for example, usalatain- toread

multiple numbers per line thdiad beenoutput usingembeds, or whickvere typednto a file using a simple
text editor, or which were generated by a Fortran program. Legal separators between atespeacse, tab, and

carriage return. Numbers may be in "scientific notation" as "2.103E+07" (which means 2.103 t7r)1e|301f0
lowercase "e" and uppercase "E" are recognized.

See the serial- comman@ndthe discussion of sockets for speaiahsiderationghat apply to usingdatain-
when communicating with apparatus connected to the serial port or with other processes.

295

FILES, SERIAL PORT, & SOCKETS

Example:

In this example, the -datain- attempts to read in enough numbers from T#tBhe entire array "Vector". If
there are not 100 numbers in TestB, it will read as many numbers as possible. The zaktéenbftells how
many numbers were actually found.

unit xdatainl
f: Vector(100)
file: td
setfile td; "TestB"; ro $%$ in the current directory
datain td; Vector
at 100,100
write <|s,zretinf|> numbers found

*

In the next example, we read the same file as text rather than numerically, then display the nghdractefs
and the text that was read:

unit xdatain2

m: filetext

file: td
setfile td; "TestB"; ro $%$ in the current directory
datain td; filetext, 80 $%ead 80 characters
at 100,100
write <|s,zretinf|> characters found:

<|s,filetext|>

*

Units "xdatainl1" and "xdatain2" agkeleton units jusfor illustration. Unit "xdatain3" doeghe same thing as
"xdatainl1", but includes the checks for successful completion.

unit xdatain3

f: Vector(100)

file: td
setfile td; "TestB"; ro
at 100,100
if not(zreturn)

write Setfile failed.

zreturn = <|s,zreturn|>

outunit $$ no point in continuing
endif
datain td; Vector
if zreturn

write datain got <|s,zretinf|> numbers
else

write Datain failed.

zreturn = <|s,zreturn|>
endif
*
SeeAlso:

File Name Specification (p. 286)
File /0O Errors (p. 287)
File 1/O Examples (p. 308)

296

FILE HANDLING COMMANDS

Defining Variables (p190)

File 1/0 with Marker Variables (p. 254)
A File Editor Application (p. 155)

readin Read a Line from a File (p. 297)
znextline The "next" Line (R71)
serial Serial Port (p. 309)

Overview of Sockets (p. 311)

readln: Read a Line from a File

The -readin- command reads a line of text from a file (or serial port or socket) into a marker. Whedsaithe -
command reads an entire file or a specified number of charattiera marker, the-readin-operation stopsfter
encountering a newline or a specified character string.

readin fd; m1 $$ read up to and including a newline
readin fd; m1, m2 3 read up to and including a match to m2

The optional final argument is a string whose contents specify whstopaeading. Ifthe final argument is
omitted, the terminator is a newline. For example,

readin fd; m1, "st"

will read into m1 up teandincluding thesequence ofs" followed by "t". If no terminator isfound, or if the
final argument izempty, the entire remainder of the file will be read.

Itis illegal to use -readin- with a styled file, and an execution error will result. Noterieadtline(m) can be
used to read a line from a marker that has been read from a styled file.

See the serial- commandndthe discussion of sockets for spedahsiderationshat apply to usingreadin-
when communicating with apparatus connected to the serial port or with other processes.

Example:
unit xreadin
file: testing
marker: line
addfile testing; "xreadIn” $$ create a test file
string line

This is the first line

and this is the second.

\

dataout testing; line $$ write out two-line text

reset testing; start
readin testing; line $$ read first line
readin testing; line $$ read second line
at 10,20
show line $$ show second line
delfile testing $$ delete the test file
*

SeeAlso:
File Name Specification (p. 286)
File /0O Errors (p. 287)

297

FILES, SERIAL PORT, & SOCKETS

File 1/O Examples (p. 308)

Defining Variables (p190)

File 1/0 with Marker Variables (p. 254)
znextline The "next" Line (p. 271)
serial Serial Port (p. 309)

Overview of Sockets (p. 311)

dataout: Write Data to a File

The dataout- commandvrites information into a file inhuman-readabldormat. Just as with theshow-
command, the information may be numbers or a text string. One cannotniaitéhe middle of afile but can
only append to the end of a file: use -reset ff; end- to position to the end of the file or -reset ff; erdplgteto
the current contents of the file.

define file: td 3 file descriptor

f: A(10,5) $$ a numeric array

m: m1 $$ a marker variable
dataout td; A $$ entire numeric array

dataout td; A,10 $$ first 10 elements
dataout td; A(3,2) $$ one array element
dataout td; A(2,1),7 $$ A(2,1) through A(3,2)

dataout td; m1 $$ append m1 to file
dataout td; m1, 65 $%&ppend 65 characters to file
dataout td; m1+<|s,x+5|>+" end" $$ embedded -show-

The first argument of -dataout- is a file descriptor, followed by a semicolon.

The second argument is a variable or an arrathefargument is a numer&ray name with no modifiers, the
entirearray isappended tdhe file. If thearrayname is followed by @ommaand anumber (N), the first N
elements are appended to the file. If the argument isrragelement or a simple numeric variable, that single
number isappended. Ithe argument is aarray elementfollowed by acommaand anumber (N), then N
consecutive array elements are appended.

If the second argument is a marker variable, andhawactercount is specified,the entire texbracketed by the

marker variable is appended to the file. If a character count is specified, that many characters from the start of the
marker are appended to the filethk file is not astyled file, styles (such as bolidalic, superscript, etc.) are
discarded before appending the text to the file. Marker expressions with embedded -show- commandsedan be

to produce arbitrary formats for the output.

If you look at the file by choosing "Auxiliary file" on the File menu after writing into it with ribenericform
of -dataout-you will see one number péne, with aspace athe beginning okachline. The text form of
-dataout-permits constructing your owautput format, usingnarker expressionsand embedded show-. The
following statement could be used to append to the file the string "The 1979 population was 25000." (Note the
explicit carriage return at the end of the line.)

dataout td; "The "+<|s,year|>+" population was "+<|s,pop|>+"."+<|cr|>

You can also use the -numout- command to output a number without spaces or carriage returns.

If the numbers sent by a numeridataout- arevery large or verysmall, theyare written in the so-called
"scientific" or "E" format, as in "2.103E+07" (which means 2.103 time75).10

298

FILE HANDLING COMMANDS

If you write into astyled file, youcanuse dataout-with markersthat contain styles such d®ld or italic.
Every -dataout- of a marker is bracketed in the file by special delimitigdgach -dataininto a markerfrom a
styled file reads one bracketed region, not the whole file. If you executedéitaout-s to dile, you would read
the file with five matching -datain-s.

Because -dataoubuffersthe output, it may not be sent immediately. The outpufter is flushed byany of
these conditions:

-setfile- with no filename is executed;
-reset fd; end- is executed;

the output buffer is full;

the program finishes execution.

The values ofreturn for -dataout- are

-1 data written
3 file notopen
11 permission denied
14 out of range

The "permission denied" error is caused by trying to writeread-onlyfile. The "out ofrange" error iscaused
by trying to write at the start or in the middle of a nonempty file. The position within the file munsbdited
with -reset-: one can write data only by appending to the end of a file.

Examples:

The nested loop-s fill the arraywith the values 101,102,103,104, 201,202,203, etc. dia@out-writes the
entire 40 numbers contained in AnArray into the newly created file.

unit xdataoutl
f: AnArray(10,4), i, j
file: td
addfile td; zempty $$ create a file (need wide window)
loop i:=1,10 3 put numbers into array
loop j=14
calc AnArray(i,j) := 100i+j
endloop
endloop
dataout td; AnArray $$ output entire array

*

The next example assumes that yaneadyhaveFileOneand FileTwo. It readsfrom one file (FileOne) and
appends the modified data onto a second file (FileTwo). Note that FileTwo must be opened as a read/write file.

unit xdataout2
f: A(100), B(100), i
file: filel, file2
setfile filel; "FileOne"; ro $$ open FileOne
setfile file2; "FileTwo"; rw $$ openFileTwo
datain filel; A
loop i ;= 1,zretinf $$ modify values of A
calc B(i) := 2A(i)
endloop
reset file2; end $3% prepare for output

299

FILES, SERIAL PORT, & SOCKETS

dataout file2; B, zretinf 3 append to FileTwo

*

The examples above omitted checkgmafturn so that the structure would be easier to see. Here iextiraple
with checks for successful operations.

unit xdataout2b $$vith error info
f: A(100), B(100), i
file: filel, file2
next StartOver
at 100,50 $3 position for zreturn comments
setfile filel; "FileOne"; ro $$ open FileOne
if not(zreturn) $$ if -setfile- failed
write FileOne not found
outunit $Pexit if error
endif
setfile file2; "FileTwo"; rw $$ open FileTwo
if not(zreturn) $$ if -setfile- failed
write \zreturn=4\FileTwo not found
\Cannot write in FileTwo
outunit $Jexit if error
endif
datain filel; A $3 read data into A
if not(zreturn) $$ if -datain- failed
write datain failed; zreturn = <|s,zreturn|>
outunit $Jexit if error
endif
loop i :=1,zretinf $%repare values for B
calc B(i) := 2A(i)
endloop
reset file2; end $$ prepare for dataout
if not(zreturn) $$ if -reset- failed
write reset failed; zreturn = <|s,zreturn|>
outunit $Pexit if error
endif
dataout file2; B,zretinf $% read B out into FileTwo
if not(zreturn) $$ if -dataout- failed
write dataout failed; zreturn = <|s,zreturn|>
outunit $Pexit if error
endif
write All Done
next NextUnit 3 successful transfer; continue
*
unit StartOver
write instructions or information for the user
*
unit NextUnit
write Data transferred; now continue . . .
*
SeeAlso:

numout Output a Number to a File(p. 301)
File Name Specification (p. 286)
File /0O Errors (p. 287)

300

FILE HANDLING COMMANDS

File 1/O Examples (p. 308)

Defining Variables (p190)

File 1/0 with Marker Variables (p. 254)
A File Editor Application (p. 155)

serial Serial Port (p. 309)

Overview of Sockets (p. 311)

numout: Output a Number to a File

The -numout- command outputs a single number to a file, witkeading spacand notrailing carriage return
(unlike the -dataout- command):

numout file descriptor; number
The dataout- command igseful for writing numbers to a fileecause itautomaticallyseparates successive

numbers by putting them on sequential lines (with a leading space). The -numout- command is useful when you
want to control the exact format of the file, although this can also be done using "embeds."

Example:
unit xnumout
file: datafile
i: nn
addfile datafile; "numout" $$ create file
if ~zreturn
write zreturn = <|s,zreturn|>
outunit
endif
loop nn:=1, 10
if frac(nn/5) =0
* -dataout- outputs a leading space
* and a trailing carriage return:
dataout datafile; sqrt(nn)
else
* -numout- just outputs the number:
numout datafile; sqrt(nn)
* add two spaces after the number:
dataout datafile; " "
endif
endloop
write Done
*
SeeAlso:
dataout Write Data to a File (p. 298)
xout Write Bytes to a File (p. 303)

xin: Read Bytes from a File

The -xin- commandreadsinformation from a file, just like datain-, exceptxin- expects8-bit bytes while
-datain-expectstext for amarker variable or a series béiman-readablaumbersseparated bygpaces, tabs, or
carriagereturns. No special formatting iequiredfor -xin-; any file can beread with -xin- including, in

301

FILES, SERIAL PORT, & SOCKETS

particular, binary files such as are used for images. The number of elements read by -xin- is given by the system
variablezretinf.

define b:MyBytes(10,5) $$ sample array

Xin td; value $$ead 1 number
Xin td; MyBytes $$ fill array

Xin td; MyBytes, 12 $$ first 12 elements
Xin td; MyBytes(3,6) 3 single element
Xin td; MyBytes(3,6),5 $$ five elements

The first argument is a file descriptor followed by a semicolon.SHvendargument is theariableinto which
information is placed. If the variable is arrayname, the -xin- attempts to fill theray. Ifthe variable is an

array element, the -xin- starts with that element and continues filling the array. When there are more bytes than
will fit in the array, the remaining bytes can be read later. That is, the file is positioned so that theresekt

byte is ready.

The optionalthird argument is the number bjites(N) to read. If athird argument (N) iggiven, the first N
elements of the array are filled. If an element of an array is specified, then N elements, startingspéhifiad
element, are filled.

The system variableretinf tells how many itemsvere actually transferred Attempting to -xin- at theend of
the file, where thereare nomore data, doesiot cause a failurezfeturn stays TRUE), butzretinf = 0 (no
information read).

Thezreturn values for -xin- are the same as for -datain-:

-1 operation successful
3 file notopen

Itis illegal to use -xin-with a styled file, and an execution error will result.

See the -serial- command and the discussion of sockets for special considerations that egipdy -4in-when
communicating with apparatus connected to the serial port or with other processes.

Example:

This example lets you select a file and then reads the file in 1000-byte chunks. Thetimesn eutloop- and
-endloop- count and display the number of uppercase letters in each chunk.

unit xxinl $$read file & count capitals
b: A(1000)
i: count, totalbytes, capitals, temp
file: fd
loop
setfile fd; zempty; ro 3 invoke dialog box
if zreturn = 18 $$vindow too small
write Make window bigger.
pause
else
outloop
endif
endloop
at 30,90;350,350 $for display of values

302

do zreturns
calc totalbytes := capitals := temp := 0
loop $$ outloop used to exit from loop
Xin fd; A $$read 1000 bytes
if not(zreturn) $$ -xin- failed
do zreturns
outunit $$ must exit
endif
outloop zretinf =0 $$ no more data
loop count ;= 1, zretinf $$ count capitals
if zK(A) <= A(count) <= zk(2Z)
calc temp := temp+1
endif
endloop
3 show totals for this chunk:
write <|cr|><|s,zretinf|>; <|s,temp|>
calc totalbytes := totalbytes + zretinf
capitals := capitals + temp
temp =0
if zwherey > (zymax-20) $$ near bottom
pause
erase 30,96;200,zymax
at 30,90 $Feposition -write-
endif
endloop
write <|cr|>Bytes in file = <|s,totalbytes,6|>

Upper case letters = <|s,capitals|>

unit zreturns

write \zreturn\ok\\\\file not open
\file not found
\\duplicate file name (file already exists)
\Wpermission denied (can't write in directory)
\\-dataout- out of range (not at end of file)
\\canceled file request

FILE HANDLING COMMANDS

write <|cr|>
SeeAlso:
File Name Specification (p. 286)
File /0O Errors (p. 287)
File 1/O Examples (p. 308)
Defining Variables (p190)
readin Read a Line from a File (p. 297)
serial Serial Port (p. 309)
Overview of Sockets (p. 311)

xout: Write Bytes to a File

The -xout-commandwrites information into a file, just likedataout-, exceptxout- writes 8-bit bytes to
produce d'binary" file such as isusedfor images. If you try to -xout- a floating-point number,wtll be
rounded to an integer. If you try to -xout- a number that is negativgreaterthan 255, you will get aerror

303

FILES, SERIAL PORT, & SOCKETS

message. One cannot write into the middle of a file but can only append ¢actlué afile: use reset ff; end-
to position to the end of the file or -reset ff; empty- to delete the current contents of the file.

define b:g(10,5) $$ sample byte array
xout td; 4x-9 $$ write value of (4x-9)
xout td; q $write array

xout td; g,10 $Hirst 10 bytes of g
xout td; q(3,2) $$ Dyte: q(3,2)

xout td; g(2,1),7 $$q(2,1) thru q(3,2)

The first argument of -xout- is a file descriptor, followed by a semicolon.sébendargument is a variable or
an array. If the argument is anrayname, the entirarray iswritten into the file. If the argument is anray
element, writing starts with that element of the array.

The optional third argument is the number of bytdsto write. If a third argument (N) igiven, the first N
elements of tharray arewritten. When an element of asrray is specified bythe secondargument, then N
elements, starting with the specified element, are written.
Because -xout- buffers the output, it may not be sent immediately. The output buffer is flushed when

a -setfile- with no filename is executed;

-reset fd; end- is executed;

the output buffer is full;

the program finishes execution.
Thezreturn values for -xout- are the same as for -dataout-:

-1 data written

3 file notopen

11 permission denied

14 out of range
It is illegal to use -xout- with a styled file, and an execution error will result.

Examples:

In this example, the ASCII values of a, b, ¢, d, and e are added to the end of a file.

unit xxoutl 3 append to file
b: A(5) $$ array of 5 bytes
file: fd
set A = zk(a), zk(b), zk(c), zk(d), zk(e)
loop
setfile fd; zempty; rw 3 invoke dialog box
if zreturn = 18 $$vindow too small
write Make window bigger.
pause
else
outloop
endif
endloop
if not(zreturn) $%$ setfile failed
write setfile failed: <|s,zreturn|>

304

FILE HANDLING COMMANDS

outunit 3 exit on failure
endif
reset fd; end $3move to end of file
if not(zreturn) $$ reset failed

write reset failed: <|s,zreturn|>

outunit 3 exit on failure
endif
xout fd; A $$append array A to file
write \zreturn \Done. \xout failed: <|s,zreturn|>

*

The next example uses -xout- and -dataout- to store the same information diffévemt ways. Use "Auxiliary
file" to examine the resultant files to see how the contents differ.

unit xcontrast
file: filel, file2
do make_file(; filel) $$ make first file
outunit ~zreturn
do make_file(; file2) $$ make second file
outunit ~zreturn
at 50,150
write Type something and press ENTER.
at 50,170
loop 3 exit from loop with outloop
. pause keys=all $8ollect typed keys
outloop zkey = zk(next) $&xit on ENTER
outloop ~(31 < zkey < 127) 3 misc. illegal keys
. plot zkey $$show keypress
xout filel; zkey $$ write key to filel
write \zreturn\\bad xout: <|s,zreturn|>
dataout file2; zkey $$ write key to file2
. write \zreturn\\bad dataout: <|s,zreturn|>
endloop
write <|cr|><|cr|> DONE
setfile filel
write \zreturn\\ filel not released
setfile file2
write \zreturn\\ file2 not released
unit make_file(; fd) 3 create file
file: fd
loop
addfile fd; zempty $dnvoke dialog box
if zreturn = 18 $$wvindow too small
write Make window bigger.
pause
else
outloop
endif
endloop
SeeAlso:

numout Output a Number to a File(p. 301)

305

FILES, SERIAL PORT, & SOCKETS

File /0O Errors (p. 287)
File 1/O Examples (p. 308)
Defining Variables (p190)

serial Serial Port (p. 309)

Overview of Sockets (p. 311)

reset: Changing Position within a File

The -reset- command is used to reposition a file for reading or writing or to empty a file.

reset td;start $Hposition to start
reset td;end $position to end
reset td;empty $$ delete file contents

The first argument of the tag is a fillescriptor followed by @&emicolon. Theexondargument is &eyword:
start, end, or empty.

The statement -reset tdnd-not only positions to thend ofthe file but also flushes any interralffers of
data out to the file, without closing the file.

The "empty" keyword empties the file and leaves the file descriptor ready for writing to the file with -dataout-. or
-Xout-.

When a file is opened with -setfile-, it is positioned to the beginning of the fileéalingthe file with datain-
or -xin-. Before writing to the file with -dataout- or -xout-, you mesther reposition to thend ofthe file or
delete the contents of the file.

Thezreturn values for -reset- are

-1 operation successful
3 file not open
11 permission denied

Any open file can be repositioned to the start or the end, but only a file with read/write access can be emptied.

SeeAlso:
File Name Specification (p. 286)
File 1/0 Errors (p. 287)
File I/O Examples (p. 308)
Defining Variables (p190)

zretinf: Number of Elements Read

The system variableretinf (return information) contains the number of elements read by -datain- or -xin-.
Attempting to do adatain- atthe end ofthe file, where thereare nomore data ornot "enough"datadoes not
cause areturn failure. The end of the file iSnoticed" by using zretinf. If you ask toread 50variables and

there are only 30 in the fileretinf returns 30. If you try to read at the very end of the fitetinf will be 0.

Note thatzlength(file descriptor) gives the current length inytes of the associatedlle.

306

Examples:

FILE HANDLING COMMANDS

The first example illustrateseadingfrom an empty file, something yoordinarily wouldn't want tado! Even
so, thezreturn for -datain- is -1.

unit

addfile
write
outunit
datain
write
outunit
at
write

delfile

xzretinf

file: td

f: AnArray(100)

td; "Testz"

\not(zreturn)\cannot create file\\
not(zreturn)

td; AnArray $$ read from empty file
\not(zreturn)\datain failed\\
not(zreturn)

100,100

zreturn = <|s,zreturn|>

zretinf = <|s,zretinf|>

td $3delete the file

In the next example, a file is created and an array of five numbstirésl inthe file. Then thedatain-tries to
read 100 values (from the same file) in order to fill ArrayB. However, the data file only has five valtiesan
zretinf returns five. Note that after the -dataout-, the file must be -reset- to the beginning for -datain-.

unit xzretinf2
file: td
f: AnArray(5), ArrayB(100)
set AnArray := 3,6, 9, 12, 15
addfile td; "Testz"
write \not(zreturn)\cannot create file\\
outunit not(zreturn)
dataout td; AnArray, 5 3 store the 5 values
write \not(zreturn)\dataout failed\
outunit not(zreturn)
reset td; start $3 prepare for datain
write \not(zreturn)\reset failed\
outunit not(zreturn)
datain td; ArrayB $$ead 100 values
write \not(zreturn)\datain failed\
outunit not(zreturn)
at 50,100
write Number of values read = <|s,zretinf|>
delfile td
SeeAlso:
File Name Specification (p. 286)
File /0O Errors (p. 287)
File 1/0O Examples (p. 308)
Defining Variables (p190)
zreturn The Status Variable (p. 332)

307

FILES, SERIAL PORT, & SOCKETS

File /0 Examples

Every command that does a file operation shouldztestirn. The program should give a message make a
"graceful” exit from file operations after amyeturn that is not TRUE. The example below uses -outunit-; you

might use -jump- instead.

For another major example of using files, see "A File Editor Application"” mentioned in the "See Also" below.

The following unit "zreturnText", which reports on the file operations, is a very "verbose" version: it makes a
commentafter everyoperation. A finished programmight return messagesnly after unsuccessful operations.
The "system errors" comment is included becausendefinedzreturn means something igery wrongand it

should be reported.

unit

do
do
loop

endloop
dataout
do
outunit
reset

do
outunit

datain
do
outunit
loop
endloop

dataout
do
*

unit

loop

endloop
*

unit

308

xfilezreturn $$ file operation zreturns
f. A(10), B(25)

i nn

file: filel

xgetfile(;filel) $3 create file
zreturnText(30,40, "addfile”)

nn:=1, 10

calc A(nn) := 100+nn

filel; A 3 get some data
zreturnText(70,zwherey+20, "dataout")
not(zreturn)

filel; start $3 reset to start of file
zreturnText(70,zwherey+20, "reset")
not(zreturn)

filel; B $$ read data into B
zreturnText(30,100, "datain")

not(zreturn)

nn:= 1, zretinf $$ a miscellaneous calculation
calc B(nn) := 2A(nn)

filel; B, zretinf $$append data

zreturnText(70,zwherey+20, "dataout")

xgetfile(; fd)

file: fd

addfile fd; zempty $%invoke dialog box

if zreturn = 18 $$vindow too small
write Make window bigger.
pause

else
outloop

endif

zreturnText(tx,ty, command) $$ conservative form
f: tx,ty

FILE HANDLING COMMANDS

m: command
at tx,ty
write <|s,command|>:
case zreturn
-1,3,4,7,11,14,16,17,18,19
write \zreturn \ OK

\\file not open (need setfile or addfile)

\file not found

\\duplicate file name (file already exists)
\Wpermission denied (wrong directory?)
\\-dataout- out of range (not at end of file)
\lillegal character read with -datain-

\user canceled selection in file dialog box
\window not wide enough for file dialog box
\not enough memory to create file dialog box

else
write system error (<|s,zreturn|>)
Please report this error to
the distributors of cT.
endcase
*
SeeAlso:

A File Editor Application (p. 155)

serial: Serial Port

The -serial-commandallows you to specify theetails ofhow to send data to angceive datdrom external
devices attached to the "serial port" of the computer. The -serial- command is similar to thecsatfitand in
that it establishes a connection with a filescriptor, afteshich youcan perform xin-, -xout-, datain-, and
-dataout- operations. These are the arguments of the -serial- command:

serial file descr.; port no., baud rate, data bits, parity, stop bits
For example,
serial fd; 1, 9600, 8, even, 1

specifies port number 1, 9600 baud, 8 bits per data byte, and 1 stop bit. The nuadtabité is typically 6,

7, or 8. The parity can be even, odd, or none. The stopatatypically 1, 1.5, or 2While the port number,
baudrate, databits, andstop bitscan be arbitrangxpressions, the only way to specify the parity is with the
specific words even, odd, or none.

On a Macintosh, the modem port is port number 1, and the printer port is port number 2@)seauial port
COML1 is port number 1, and serial port COM2 is port number 2.

An -xin- command reads whatever data are already available at that moment, so it is impatiackzoetinf
to find out how many elements were read:

xin fd; array, 5 3 read up to 5 bytes if available now
show zretinf $$show the number of bytes read

309

FILES, SERIAL PORT, & SOCKETS

Important note Whenreadingfrom the serial port or a socket, thaatain-, -readin-and-xin- commandswill

finish immediately if there are no bytes (characters) available, setétigf to zero. If one or moreharacters

are initially available the -xin- command will continue reading until the specified number of bytes hasadeen

or until thereare nobytes available. Thedatain- commandvhen readinginto a markerwith no specified
charactercount will also continugeadinguntil no bytesare available. The other commandsd options
(numeric -datain-, -datain- into a marker with a character count, and -readirnrywidlry hard tocomplete their

work if there are bytes initially available (numeric -datain- requires that the first character be a legitimate start of
a number). If they don't find what they are looking for (nonnumeric character signaling the end of a number, end
of line, etc.), they will wait a long time before giving up. For this reason it is usafisopriate whemeading

the serial port or a socket to use -xin-, or -datain- into a marker with no character count specified.

As with the setfile- command, "serialfd" closes the connectidpetweenthe file descriptor fdand the serial
port.

SeeAlso:
setfile Select #&ile (p. 291)
xin Read Bytes from a File (p. 301)
xout Write Bytes to a File (p. 303)

310

SOCKET COMMANDS

Socket Commands

Overview of Sockets

Sockets in cTare ageneralfacility for communicatingbetween differenprograms running on the same or
different computers. These are two-way, read/write, relichdannels. Some computer systems supgeparate
processesunning simultaneously on the same machiaed asocketcan carrymessages betweehese
processes. In Unix-based and AppleTalk-based compaterorks, ¢cT programs running alifferent computers
can be connected by socket. Thisprovidesthe capability for two or more users of cT programs to
communicate with each other interactively at high speed.

While interprogram communication between programs running osathemachine can bachieved by reading
and writing ordinary files, socket communication is much faster. Socleats be usedor communication
between two cT programs or between a cT program and a program written in some other lgrguidgdthat

the other program can cooperate with cT (by using the same protocol for sending and receiving messages).

An important use of sockets is to connect between a cT prograrhahdlesthe graphical usenterfaceand a
program written in some other language. At preseist is sipported onMacintosh System and onUnix.

Sample C-language progranae provided inthe "socket" programdglistributed with cT. Interprocess
communication on Windows has a very different structure, and cT supports DyRDataiExchange rather than
sockets on Windows. Eventually it is intended to support the somewhat similar AppleEvents on the Macintosh.

A socket isreferencedwvith a file variable, just as with a file or a serial p@ncethe socket isopened and
connected it acts very much like a file: input and output operations are done with -datain-, -aeddttataout-,
or -xin- and -xout-.

Important note:Whenreadingfrom a socket or the serial port, thaatain-, -readin-and-xin- commandswill

finish immediately if there are no bytes (characters) available, setgtigf to zero. If one or moreharacters

are initially available the -xin- command will continue reading until the specified number of bytes hasadeen

or until there are nobytes available. Thedatain- commandvhen readinginto a marker with no specified
charactercount will also continugeadinguntil no bytesare available. The other commandsd options
(numeric -datain-, -datain- into a marker with a character count, and -readlrieywidlry hard tocomplete their

work if there are bytes initially available (numeric -datain- requires that the first character be a legitimate start of
a number). If they don't find what they are looking for (honnumeric character signaling the end of a number, end
of line, etc.), they will wait a long time before giving up. For this reason it is usapflyopriate whemeading

a socket or the serial port to use -xin-, or -datain- into a marker with no character count specified.

The greatest difficulty inusing a socket is in making the initisbnnection betweethe two independent
processes. For the two to communicate they each need townenethe other is. Conceptually, theay this

works in cT is that one process (called the server) adveitsspgesencevith a -server- commandndwaits for

connection attempts. The othamocesgcalledthe client)executes a -socket- commandattempt toconnect.

The server also uses a -socket- command to find out that the final connection has been made. Once the server and
client are connected to each other there is no remaining asymegtrgenthe two. Both of thentansimply

read and write the socket as they would a file.

SeeAlso:
server Advertising a Server (p. 312)
socket Connecting to Another Process (p. 311)

getserv Asking about Servers (p. 316)

311

FILES, SERIAL PORT, & SOCKETS

server: Advertising a Server

The -server- command allows a program to advertise itself. It has these possible forms:

server fd; logical, "serverA", "Joe's" 3 kind and instance of server

server fd; logical, "serverA" $$ instance of server is zempty

server fd; local,"serverB" $$ only for connections smamemachine

server fd; ptp,"serverC" $$ program-to-program connection on Macintosh
server fd; absolute, "N5000" $$ mostly for Unix

The first argument of the tag is a file variable. Sitits only advertisesavailability, after executing a server-
command the socket is NOT yet open for reading and writing. A subsequent -socket- commeadddsr that
(see -socket- documentation).

The second argument of the tag specifies the address type andvsrdhélogical”, "local”, "ptp" (program-to-
program on Macintosh), or "absolute”. Programmais strongly encouraged toavoid absolute addresses,
because absolute addresses are machine, system software, and network software dependent.

The third argument of the tag is the name of the server. Other programs can use the -server- cocomzext to
by name to this server.

Logical addressesan contain two parts. The first part is tkend of server, thesecondpart is theparticular

server of this kind. The first padescribeghe program that is runnin@erverkind); the secondpart describes

who is running that prograrserverinstance). On a given netwotkeremight be many instances ofgiwven

kind of server advertisingself. A client candecidewhich one to connect tbased orthe secondpart of the

server address, which should contain information allowing a client to do just that. (See the documentation of the
-getserv- command on how to obtain instance information from a server.) Hdbtevhile the systermariable
zusercan be useful for theecondpart on some multiuser systems, this isn't portable, sincesimgle-user

system there may not be a log-in name.

The keyword "local" means that you intend to connect with another program running on the same machine. To
talk to another program on the same computer you Ham#to use "local”because cwill find a server on

your computer just as it will on some other networked host. However, "local” is much faster wherra¢hHy is

what is intended, because it is not necessary to search for a remote host.

An absoluteaddress iontained in anarker. The specific content of tinearkerwill depend onthe network
software,but in generalthe first characterspecifies the kind ofddress. Armabsolute Internet domaisocket
address consists of two parts: the workstation name and the socket number. An abdatatfor the -server-
command only needs to specify the socket number: the absodldesstarts with "N"and isfollowed by the
socket number (e.g., "N5000"). The workstation nalmesnot have to be specified because itthe name of
the machine the server is running on. Generally speaking, the only time an abddiass imeeded isvhen a
non-cT program is involved.

Macintosh: On Macintosh System 7 or on any Macintosh with pregram-to-program (ptpjoolbox
installed, youcanuse the ptplayer instead othe raw AppleTalk protocol. This means that a pfogram

running on a Macintosh without this toolbox (System 6, for example) can't talk to a cT program that is running
on another machine that has the toolbox. The "local" argument is interpreted to mean to usea@fetgion

on the samemachine,whereaswith the "ptp" argument cT will also try tmake connections witlother
Macintoshes in the same AppleTalk zone. The "logical" or "absolute" arguments are interpreted to mean that the

312

SOCKET COMMANDS

program should use thraw AppleTalk protocol to connedtetweentwo different Macintoshes in thesame
AppleTalk zone (you cannot use this to connect two programs on the same machine).

At present, connections between cT programs on one or more Macinémshes validated.You don'thave to
prove who youare beforehe connection is established (connectians made asGuest"). This means that
"Program Linking" must bdurned on (everfor making connectionbetweentwo programs on thesame
machine), and "Guest" must have access to program linking if a connection is made between two hosts.

You can stop being a server by executing -setfile FileDescriptor-, since a socket connection is sinfilar to a

connection.

See the -socket- command for sample programs using the -server- command.

SeeAlso:
Overview of Sockets (p. 311)
socket Connecting to Another Process (p. 313)

getserv Asking about Servers (p. 316)

socket: Connecting to Another Process

The -socket- command is the command used to actually make the initial conhetti@entwo processegone
called a "serverandthe other a "client"). It is essentialgquivalent to -setfile-The -socket-command has
several forms, the first used by servers, the others by clients of those servers.

socket fd $%ised by a server to connect to a client

socket fd; logical, "serverA", nn $$ connect to nnth server of type "serverA"
socket fd; logical, "serverA" $$ choose first server of type "serverA"
socket fd; local,"serverB" $$ connect to server on this machine

socket fd; ptp, "serverC", nn $$ Macintosh; connect to nnth server
socket fd; ptp, "serverC" $$ Macintosh; chofisst server

socket fd; absolute, "N5000" $$ mostly for Unix

In all casegreturn is set to TRUE if the connection was successful and set ¢éorarreturn if theconnection
was not successful. Currently the only error value is 4, similar to "file not found."

The first argument of the tag is a fariablethat will be usedfor reading andwriting data,using commands
such as -datain-.

The serverform (-socket fd- with no other argumentsyill succeed4return = TRUE) if at least onether
process has attempted to connect to this server, in which case domnilkéct tothe first processhat attempted
to connect. The command will faiteturn = 4) if a previous-server- commantias notbeenexecuted bythis
program. When the connection is established the -server- advertisiegased sahat no otheprocessesvill
waste time attempting to connect.

The second argument of the tag specifies the address type anavsrdhélogical”, "local”", "ptp" (program-to-

program on Macintosh), or "absolute". Programmams strongly encouraged toavoid absolute addresses,
because absolute addresses are machine, system software, and network software dependent.

313

FILES, SERIAL PORT, & SOCKETS

The keyword "local" means that you intend to connect with another program running on the same machine. To
talk to another program on the same computer you Hamtéto use "local"because cWill find a server on

your computer just as it will on some other networked host. However, "local" is much faster wherrdhby is

what is intended, because it is not necessary to search for a remote host.

A logical address contains two parts. The first part is the kind of servesetbead is aaumber thatndicates
which of the servers of that kind we wish to connect to. (Note that this is thessaraekindstring or marker
expression that issed inthe -server- or -getsencommand.) Ifthe number is omitted it is taken to be one.
While you would typically execute a -getserv- command befesecuting a -socket- commanithis is not
necessary.

An absoluteaddress iscontained in anarker. The specific content of tinearkerwill depend onthe network
software,but in generalthe first characterspecifies the kind ofddress. Armabsolute Internet domaisocket
address fothe client-socket- commandeeds tospecify the workstation nansnd asocket number. The first
character for the absolute address is "I". The rest ofddesss ishe workstation namépllowed by acomma,
followed by the socket number (e.g., "Iripley.andrew.cmu.edu,5000").

A very simple connection would be

socket fd;logical,"file_server" $8y to connect to first
$$ available server of type "file_server"

This connects to the first found server of kind “file_server".

Once a serveandclient are connecteckither process camse another file variablendopen another socket to
some other process.

Macintosh: On Macintosh System 7 or on any Macintosh with pregram-to-program (ptpjoolbox
installed, youcanuse the ptplayer instead othe raw AppleTalk protocol. This means that a pfogram

running on a Macintosh without this toolbox (System 6, for example) can't talk to a cT program that is running
on another machine that has the toolbox. The "local" argument is interpreted to mean to useanetgfon

on the samemachine,whereaswith the "ptp" argument cT will also try tmake connections witlother
Macintoshes in the same AppleTalk zone. The "logical" or "absolute" arguments are interpreted to mean that the
program should use thraw AppleTalk protocol to connect he¢entwo different Macintoshes in thesame
AppleTalk zone (you cannot use this to connect two programs on the same machine).

At present, connections between cT programs on one or more Macinémshes validated.You don'thave to
prove who youare beforehe connection is established (connectians made asGuest"). This means that
"Program Linking" must bdurned on (everfor making connectionbetweentwo programs on thesame
machine), and "Guest" must have access to program linking if a connection is made between two hosts.

Examples: The example given below shows how two cT programs can conneechother on a Macintosh
or Unix. An important use of sockets is tonnect between a cT prograimat handlesthe graphicaluser

interfaceand aprogram written in some other language running onstmmemachine. At presenthis is

supported orMacintosh System &And onUnix. SampleC-language programare provided inthe "socket"

programs distributedvith cT. Interprocescommunication olWindowshas a verydifferent structure,and cT

supports Dynamic Data Exchange rather than sockets on Windows.

In addition tothe "chat" example shown belowgethe socket programs in the set of samptegrams
distributed with cT.

314

SOCKET COMMANDS

Example:

Here is a "chat" program that permits two people using networked computers to type messages back and forth to
each other. This program is interesting because it will try to connect to another chat program as a client and if it
fails it will become a server. So two copies of this program will be able to connect no matter oraenttey
are started. (See the -getserv- command for a more general way to find out what servers are available.)

If you would like to try this on aingle Macintosh, use the Sharing Setup control pananablefile sharing

and programlinking. In the socket- command chandéogical" to "local". Change the tag of theerver-
command to fd; local, "chatter" (that is, change "logical" to "local" and delete the "myname" argument). Make a
binary and double-click that binary to run it with the cT Executor. In cT Create, run the progranthé¥eware

two cT programs running that can send messages to each other.

define group,connect:
file: fd
unit SetupChat

merge,connect:
* try to connect to server

at 5,5

write connecting

socket fd; logical, "chatter”, 1~ $$nnect to first available
$$ “chatter" server

if ~zreturn

* no server, become server & wait
* for someone to connect to us

write Noserver available, we will be server

server fd; logical, "chatter", "myname"

loop
socket i 3 try to accept connection
outloop zreturn $$got connection
write . $$indicate waiting......
pause 1 $Pvait a while (don't want

$$ to use up the computer,
$$ we're just waiting)
endloop
endif
* At this point fd is a valid connection, either because
* original socket connected, or because we became
* a server and someone connected to us.

jump Chat
*
unit Chat
merge,connect:
m: ml
at 10,80
write We are connected! Choose menu item to send a message.
menu Send: DoMessage $8t up menu to allow sending

* We just keep looking for input on socket,
* and display it if it comes.
loop
datain fd;m1 $dry to read socket
* Note that zreturn = TRUE and zretinf = 0 if connection still good

315

FILES, SERIAL PORT, & SOCKETS

* (socket is still open) but there is nothing to read.

if zreturn & zretinf > 0
* got something
erase 10,80;zxmax,zymax
at 10,80;zxmax-10,zymax
show m1l
endif
pause 1 $%vait a bit not to consume the computer
endloop
*
unit DoMessage $#enu unit for sending a message

merge,connect:
* Get a string to send (terminate with Return):

erase 5,5;zxmax-10,75

arrow 5,5;zxmax-10,75

ok

endarrow

dataout fd;zarrowvm $$end the message
SeeAlso:

Overview of Sockets (p. 311)

server Advertising a Server (p- 312)

getserv Asking about Servers (p. 316)

Sample Programs (p. 28)

getserv: Asking about Servers

The -getserv- commandllows a program tdind out what program$ave executed -servereommands to
advertise themselves:

getserv server_kind $8ingle argument; set zretinf to the
$$ number of servers of this kind

getserv server_kind, nn; m1 3 full form; get information on
$$ the nnth server of this kind

Here server_kind is atring ormarkerexpression (e.d'test-server"). The number nindicatesthat we want
information on the nntlserver ofthis kind,andmarker mlwill be filled with the string theparticularserver
gave as the second part of the address in its -server- command (server irstatoe). is TRUE if there is an
nnth host of this kind or 4 ifiot.

When there are several servers of the same kind on the network how decidmwhich one to try toconnect
to? If you execute the single-argument form of the command,

getserv server_kind
you are told (1) viareturn, whether there are arservers ofthis kind, and(2) via zretinf how manyservers
there are. You can then execute several full -getserv- commands to get the padigelanformation foreach
one, in order to decide which one to connect to.
The single-argumengetserv- commandsks the outsidesorld for information about available servershich

may be quite slow because of the query to the network or other parts of the computguemhis also made

316

SOCKET COMMANDS

on other -getserv- commands if you have not executed the single-argument form. Qnearthas beemmade,
subsequent full-form -getserv- commandd be fast. However, programmers shoulikware ofletting their
server information get stale. Executing another single-argument -getserv- convitiamodatethe information.
There is no guarantee that the server information will be in the same order as before.

Example:
This subroutine uses the single-argument form of the -getsemmand to findout whatserversare available,

makes the connection to a sernvamndreturns theconnectedile descriptor, asvell as a success fldagdicating
whether the connection was made successfully.

unit ConnectClient(serverKind; fd,success)
m: serverKind $% has the server kind
i: success $$ TRUE if successfully connected
file: fd $$ will have connected client
m: ml $$ will contain server information

i jj, nservers

calc success = FALSE
getserv serverKind $#ind out what servers are
$$ available on the network

outunit ~zreturn $$ nsuch servers are available
calc nservers ;= zretinf
if nservers = 1
* connect to the only server there is:
socket fd; logical, serverKind, 1
calc success ;= TRUE
outunit
endif
write There are <|s,nservers|> servers of that kind.

Please choose one by typing X, or type
anything else to see more.

loop jii := 1,nservers
getserv serverKind,jj;m1
at 10,jj*20
show m1l
pause
if zkey = zk(X)
socket fd; logical, serverKind, jj
calc success := TRUE
outunit
endif
endloop
write You didn't choose any!
SeeAlso:
Overview of Sockets (p. 311)
server Advertising a Server (p- 312)
socket Connecting to Another Process (p. 313)

317

SYSTEM VARIABLES
9. System Variables

Overview of System Variables

While a program is executing, the computer keteppsk of alot of information about theiserandabout the
general environment. The "system variables" make this information available to the author.

Associated with screen graphics:
ZXmin, zxmax, zyminzymax
zwherex, zwherey, zwidth, zheight, zswidth(), zsheight()
zcolorf, zcolorb, zdefaultf, zdefaultb, zwcolor, zncolors
zxpixels, zypixels
zmode
zreshape
zvtime, zvwidth, zvheight, zvlength, zvplaying (for video)
zforeground

Associated with mouse interactions:
ztouchx, ztouchy, zleftdown, zrightdown, zdblclick
zgtouchx, zgtouchy, zrtouchx, zrtouchy

Error information:
zreturn, zretinf

Associated with the -edit- command:
zedit, zeditkey, zeditx, zedity, ztextat
zeditsel, zeditvis, zedittext, zhotsel, zhotinfo

Associated with the -button- and -slider- commands:
zvalue, zslider, zbutton

Length of arrays, strings, and files:
zlength

Associated with the -arrow- command:
zarrowm, zarrowsel, zcaps, zentire, zextra, zjcount, zjudged
zntries, zopcnt, zorder, zspell, zvarcnt, zwcount, zanscnt

Miscellaneous:
zkey, zdevice
zclock, ztime, zdate, zday
Zfilepath, zfilename, zcurrentdir, zhomedir, zuser
zcurrentu, zmainu, zfromprog
zclipboard
zmachine

One of the most important systerariables iszreturn. It reports whether onot acommandwas successful.

Not all commands providereturn; if a -draw- command fails, the whole system has failed and therepisinb

in issuing azreturn value. However, if -compute- fails, there is some fault either with the program or with the
user, and thereturn value can be used fwovide feedbackabout the type of failure. A successtrkturn is
always TRUE (-1). The specifierror values forzreturn are discussedith the individual commandsnd are
summarized in thereturn documentation.

318

OVERVIEW OF SYSTEM VARIABLES

In addition,the -sysinfo-commandgives you a way tdind out about somapecific features ofhe particular
computer the program is running on, such as default font size, anahsizentents of thesystem-defined color
palette.

SeeAlso:
sysinfo Get System Information (p. 319)

sysinfo: Get System Information

The -sysinfo- command providegtailedinformation about the particular computer on which your program is
running:

sysinfo default newline, variable

Sets the indicated (integer or floating-point) variable to the newline height ofetheltapplication font
of this computer. This gives aimdication of what the useconsiders areadablefont on this
computer/display.

sysinfo palette size, variable
Returns the (hardware) palette size. This value is 0 on a true-color display.

sysinfo default colorsyariable

Returns the number of colors the system or hardware has already set up, out of the total number of colors
available.

sysinfo foreground, red, green, blue

Returns the RGB definition of the current foreground color.

sysinfo background, red, green, blue
Returns the RGB definition of the current background color.

More than one keyword/variable set may appear in one sysinfo command, separated by semicolons:

define integer: palsize, dcolor

.s‘3}sinfo palette size, palsize; default colors, dcolor
Example:

unit xsysinfo

i lineheight, palsize, dcolor
i: rfore, gfore, bfore
i: rback, gback, bback

iz ii, jj, imax
sysinfo default newline, lineheight
sysinfo palette size, palsize
sysinfo default colors, dcolor
sysinfo foreground, rfore, gfore, bfore
sysinfo background, rback, gback, bback
at 10,10
write The default newline height is <|s,lineheight|>.

There are <|s,palsize|> palette slots.
The system uses <|s,dcolor|> slots for controls, title bars, etc.
Foreground RGB: <|s,rfore|>, <|s,gfore|>, <|s,bfore|>.

319

SYSTEM VARIABLES

Background RGB: <|s,rback|>, <|s,gback|>, <|s,bback]|>.

outunit palsize <=0
calc imax := sqrt(palsize)-1
loop ii ;= 0, imax
loop i ;= 0, imax
outloop ii+(imax+1)*jj >= palsize
rorigin 10+10ii,100+10jj
color ii+(imax+1)*jj
rfill 0,0; 8,8
endloop
endloop
SeeAlso:
zmachine Current Machine (p337)

System Literals and Constants
TRUE A "true" logical expression evaluates to -1.
FALSE A "false" logical expression evaluates to 0.

Pl = 3.14159.....
DEG = 2P1/360 (the number of radians in one degree)

zred, zyellow, zgreen zcyan, zblue, zmagenta standard palettslots

320

SYSTEM VARIABLES FOR GRAPHICS AND MOUSE
System Variables for Graphics and Mouse

Current Screen Size

The system variablesxmin, zymin, zxmax, andzymax give the maximumandminimum values of x and
y that are visible on the display (if it is large enough). They give the cacénédisplay size.

When there is no -fine- commarzkmin = zymin = 0. The maximum valuesan be foundrom zwidth and
zheight zxmax = zwidth-1 andzymax = zheight-1.

When -fine- is activezxmin andzymin are equal to the minimum values given by tfiee-. The maximum
values,zxmax andzymax, are one less than the x and y in the -fine-.

Examples:

Try this example with different window sizes. Notice that when the -fine- is active, the right end of the long box
is always lost, because its right end is at 450, but the active screen defined by the -fine- only extends to 300.

The blank-tag -box- draws a box around the active screen area.

unit zZxmax
do zxmaxdraw(1) $$ nefine-
pause $$vait for keypress
erase $®rase entire display
fine 400,300 $$fine-
do zxmaxdraw(2) $$ersion 2
pause $$vait for keypress
erase $®rase entire display
fine 50,0; 400,300 $¥ine-
rescale -1,-1,0,0 $$and -rescale-
do zxmaxdraw(3) $$ersion 3
unit zxmaxdraw(temp)
i: temp
box 3 box active display area
box 5,150; 300,300; -20 $$ thick box
box 50,200;450,250; -5 $$ long box
at 50,10
write \temp\\\First \Second \Third \\
write version

zZxmax,zymax = <|s,zxmax|>, <|s,zymax|>
zxmin,zymin = <|s,zxmin|>, <|s,zymin|>

zwidth = <|s,zwidth|>
zheight = <|s,zheight|>

Actual Screen Size

The system variableavidth andzheight give theactual display width and height in pixels.

321

SYSTEM VARIABLES

The variablezwidth andzheight may beused to send aexplicit message if the usensindow is an
inappropriate sizeThese variableare also usedwhen the displaylepends orthe actual sizendshape of the
space available. Such displays are much harder to manage than ones that use -fine- and -rescale-!

The systenvariableszxpixels andzypixels indicatethe actual number ofceeendots ("pixels") inside the
region defined by the -fine- command (and framed tbfaak-tag -box- command). If naescale- command has

been executegxpixelsandzypixelsare the same as the bounds specified by fthe- commandunless the

-fine- region is larger than the window, in which case they are the number of available pixels inside the window.

Note the contrast withwidth andzheight. Theyindicatethe number of pixels in the entire windowhich
may be a larger display area than determined by the -fine- and -rescale- commands.

The uses ofzxpixels andzypixels are rathertechnical. Theycan be used to calculate crrespondence

between thdrescaledcoordinates of an -at- odraw- andthe actualscreenpixels. For example, icorare not

rescaled, and it may be necessary to calculate their size in terms of rescaled coordinates to know whether a mouse
click is within the border ofthe icon. Suppose yohave designed aricon that is 20 by 20 pixels. The
corresponding icon size in rescaled coordinates can be calculated in this way:

fine 500,300

rescale TRUE,TRUE,FALSE, TRUE

calc iconx := 20(500/zxpixels)
icony := 20(300/zypixels)

Example:

This example shows how ttheckfor a windowthat is "too small." Eachtime thewindow is reshaped, the
current main unit{zwidth is reexecuted, anithe size ischecked by -do checker-. Ifthe size is too small, a
message is displayed. In a typical program, chméickerwould be specified as the -imain- unit.

unit xzwidth
do checker
at 50,50
write This is unit "xzwidth."
unit checker
f: needwide = 500 $$ requires 500 wide
f: needtall = 200 $$ requires 200 tall
loop zwidth < needwide | zheight < needtall
erase $®ptional, these two lines
pause A $nake a blink on keypress
at zwidth/4, zheight/4
if zwidth<needwide & zheight<needtall
write Window is too small!
elseif zwidth < needwide
write Window is too narrow!
else
write Window is too short!
endif
pause $Fvait for window change
endloop
SeeAlso:
imain Modifying Every Unit (p. 232)

rescale Adjusting the Display (p. 37)

322

SYSTEM VARIABLES FOR GRAPHICS AND MOUSE

Current Screen Position
The system variables for the current screen position give the point where the next display will start:
zwherex, zwherey

Often the"current screemosition” is not explicitlyconsideredUsually we say, "Theat- commandsets the
position for the beginning of a -write- statement.” A more precise statement would beat“Tb@mmandsets
the current screerposition; the write- statement begins itdisplay at thecurrent screerposition.” For
example, the positioffior the center of a circle isisually set by anat- commandbut the circle canjust as
easily be centered around the end of a line. The lines below put the center of the circle at 300,100.

draw 100,100; 300,100
circle 50

Every command that modifies the screen display leaves the current gosgon at apredictablelocation. The
positions selected are described in the individual command descriptions.

The variablezwherexandzwherey are notupdateduntil a command isfinished. In the example below, the
-circle- leaves the current screen position atcéater ofthe circle. The vector- command doasot modify the
screen position until after it is all finished, swide the vector commanawherex, zwherey still points to
the center of the circle.

Example:
unit xzwherex
ii X,y
at 50,50; zxmax-50,140
write The screen position at the end of a -write- statement
is the position where the next character would have
been printed.
circle 7 3center circle at end of -write-
vector 65,145; zwherex,zwherey; 0.2
at 60,150; zwidth-40, 300
write The little circle is centered on
the (zwherex, zwherey) at the
end of the first -write- statement.
*
unit xzwherex2
ir X,y
at 100,100 $&enter for -circle-
circle 75, 180, 330 $$ arc from 180 to 330 degrees
calc X :=zwherex
y := zwherey
vector 100,100; x-4,y+4
at 100,100 $$ises embedded -show-s:
write The end of the arc

is at <|s,x|>, <|s,y|>.

323

SYSTEM VARIABLES

zmode: Current Mode

The system variablemodetells what the current graphics mode is. An important use is in a general subroutine
that must alter the mode and then restore it to its previous value.

zmode = 1 mode write
2 mode rewrite
3 mode erase
4 mode inverse
5 mode xor

Example:

unit xzmodel

mode rewrite

fill 50,10; 150,100

at 10,15

write This is in mode rewrite,

do xzmode2(75,55)

at 110,80

write and so is this.

*

unit xzmode2(x,y)
i: X, y, savemode

calc savemode := zmode $$ save current mode

mode erase

at X,y

disk 10

mode \savemode-2 \write \rewrite 3 restore original mode

\erase \inverse \xor

SeeAlso:
mode Changing Modes (p.- 60)

zreshape: Screen Reshape Status

The system variablereshapeis TRUE if thecurrentmain unit wasstarteddue tothe user reshaping the
window. It is FALSE if the current main unit was entered normally (-next-, -back-, -jump-).

The -jump- command allows passing of arguments to maits, though this is noadvised. Ifthe display is
reshaped, execution starts again, but the argunaesist passedagain. Numeric local variabldsut not other
kinds of local variables retain the values they had just before the reshape.

Example:

In this example, the house is drawn only if the screen is reshaped.

unit xzreshape $#ise Run from Selected Unit
next xzreshape

do \zreshape\house\x

at 91,110

write The House

That Jack Built

324

SYSTEM VARIABLES FOR GRAPHICS AND MOUSE

*

unit house
draw 45,75; 25,170; 200,170;211,82; 45,75
draw ;100,40; 175,45;212,83
SeeAlso:
unit Basic Building Blocks (p. 223)

rescale Adjusting the Display (p. 37)

Mouse Status

The x,y position of the mouse when a click is entered is given by three sets of system variableseacte dbr
the coordinate systems:

ztouchx, ztouchy $$ absolute
zgtouchx, zgtouchy $$ graphing
zrtouchx, zrtouchy $$ relative

These variables are all zero unless the most recent user input was a mouse click.

It is also possible to determine the current mouse coordinates, independent of whether teeamimsput was
from the mouse:

zmousex, zmousey $$ current mouse position

Special note: theurrentmouse position given by zmousex/zmousey mayolside the cTwindow due to
dragging, and the reported position is affected by -fine- and -rescale-.

The system variabledeftdown andzrightdown are TRUE if the left or right button isurrently held down,
independent othe current value ofzkey (which refers tothe mostrecent -pause- or -getkewvent). For
example, in a unit driven by a -slider- zieftdown isTRUE you mightchoose to dmothing, waitingfor the
mouse button to be released before action is taken.

If the time betweentwo down events is less than the time given by syst@mablezdblclick, andthe two
clicks are near each other on the screen (withinpixels, say), you may want twonsiderthe secondclick to
be a "doubleclick." Some computer systems allow the user to specifyldible-clicktime, in which case
zdblclick is set to theuser-specifiedime. Youcan identify double-cliclevents by keeping track diie time
between down events (usiaglock).

Example:
unit Xxmousestatus
at 10,10
write I will make an O wherever you click
with the left mouse button.
loop
pause keys=touch
at ztouchx,ztouchy
. circle 5
endloop
*

325

SYSTEM VARIABLES

SeeAlso:
pause Mouse Inputs (p. 126)
enable Allowing Mouse Input (p. 132)
zkey Last User Input (p- 333)

Color Status
Here is a summary of system variables associated with color:

zcolorf current foreground color

zcolorb current background color

zdefaultf default foreground color on this machine
zdefaultb default background color on this machine
zwcolor current window color (set by -wcolor-)
zncolors number of available colors

For additional color status information, see the -sysinfo- command.

Example:
unit xcolorstatus
color zred,zyellow
mode rewrite
at 10,10
write Red on yellow
do xdefaultcolors
at 10,40
write More red on yellow, rewrite
*
unit xdefaultcolors
i: savemode, savef, saveb
calc savemode := zmode
savef ;= zcolorf
saveb := zcolorb
color zdefaultf,zdefaultb
mode inverse
at 150,10
write Default colors, inverse
* restore colors and mode:
color savef,saveb
mode \savemode-2 \write \rewrite
\erase \inverse \xor
*
SeeAlso:
Color Introduction (p. 71)
sysinfo Get System Information (p. 319)
color Color Graphics & Text (p. 77)
wcolor The Window Color (p. 79)
palette Creating a Color Palette (p. 81)
zncolors The Number of Available Colors (p. 86)

326

SYSTEM VARIABLES FOR GRAPHICS AND MOUSE

Video Status

After executing a -video- command, the system variablength give the totalduration in secondgvwidth
gives the original width of theideoimage in pixels,and zvheight gives the original height of theideo
image in pixels. While playing a videsequencethe systenvariablezvtime gives thecurrenttime measured
from the start of the movie. The system variablglaying is TRUE while avideo clip (even if sound-only)

is playing.

Example:
unit xvideoinfo
video movie; "Some File"; 10,50; 100,200 $$ change file name!
at 10,10
if ~zreturn
write Can't play this ravie.
zreturn = <|s,zreturn|>.
pause
jumpout
endif
vset rectangle, 10,50; 10+zvwidth-1,50+zvheight-1
write Video clip is <|s,zvlength|> seconds long.
vplay zvlength/3, 2zvlength/3 $$ play middle third of clip
loop zvtime <= zvlength/2 $$ watch for half-way point
pause 0.1
endloop
write Movie time = <|s,zvlength/2|> seconds.
pause
*
SeeAlso:
video Initialize Video (p- 117)
vplay Play a Video Sequence (p. 120)

zforeground: Window Forward

The systenmvariablezforeground is TRUE if the executiomvindow is the active window, fullyvisible, in
front of all other windows. File selection dialog boxes, atlidleg- boxes,arenot created ifthe window is not
the active, forward-most window.

Generic Font Names

Because differensystems assiguifferent names to theistandardfonts, cT hasseveral generidont family
names. These names are recognized on all machines:

zserif - astandard font with serifs (Times, except for New York on Macintosh)
zsans - a standard sans-serif font (Helvetica, except for Geneva on Macintosh)
Zfixed - astandard fixed-width font (Courier, except for Monaco on Macintosh)
zsymbol - a math symbol font (Symbol on all platforms)

In addition, there are generic patterns, icons, and cursors:

zpatterns gray scales & some figures

327

SYSTEM VARIABLES

ZCcursors some cursors
zicons -some icons

The generic names can be used anywhere that a font name can be used:

font zsans,16
icons zicons

pattern zpatterns, zk(a)
icons zserif+"12"

pattern zsans+"16"

The -font- command specifies a family name, so the format of the tag is "familynfait@ied by acomma,
then the size. The scaling of the fontdisterminedappropriately for whatever machitiee program is running
on. The -icons- and -pattern- command refeexglicit font setsandnot to families. If a font set isised with
-icons- or -pattern-, the format is "familynamesize" with no commas or spaces.

If no font is specified bythe program, thalefaultfont used is"zserif,15". The scaling of the font will be
determined appropriately for whatever machine the program is running on.

In the future additional patterns, cursors, and icons magdbed tothese sets. Ithere is no -icons- command,
the icon set is the same as the default font.

SeeAlso:
font Selecting a Typeface (p. 43)
icons Selecting an Icon (p. 93)
pattern Making Textured Areas (p. 61)

rescale Adjusting the Display (p. 37)

328

OTHER SYSTEM VARIABLES
Other System Variables

zfilename: Getting File Name

You can use zfilename(file descriptor) to get the main part of a file nansssociatedwith that file
descriptor by -addfile- or -setfile-, ardfilepath(file descriptor) gives the rest. Fa@xample:

setfile fd; zempty; ro $$ suppose file is /abc/def/datal

show Zfilepath(fd)+zfilename(fd) $$ "/abc/def/"datal"
SeeAlso:

addfile Create a File (p. 289)

setfile Select &ile (p. 291)

setdir Select a Directory (R94)

User ID and Home Directory

There are two system marker variables that give the user's home directory and the ushesa@re useful for
keeping records and for use when a file-name must be constructed.

zuser the user's ID
zhomedir the user's home directory

If the user's homéirectory is /cmu/cdec/zz9then zhomedir contains the full path name for thdirectory
"lcmu/cdec/zz9z" anduser contains "zz9z".

Examples:
unit Xzuser $&how ID & directory
at 50,50
write User's ID is <|s,zuser|>.
at 50,75
write User's home directory is <|s,zhomedir|>.

*

The two examples below (..1a and ..1b) both create a file in the user's subdirectory "mysub"”. Gbeaefiests
the file name with acalc- statementand then uses that file name in thaddfile- command. Thesecond
composes the file name directly, inside the -addfile- command.

It is very important to checkreturn after every file operation. "Permission denied" can mean that thedosser
not have write access to the specified (sub)directory or foldehabrthe(sub)directory or folder doasot exist.
You probably don't have a subdirectory named "mysub".

Note that these examples actually create files in your directory or folder. If you run the example successfully and
then try it again, you will get "duplicate file name."

unit xzhomedirla $&reate a file
file: fd
m: newfile $$ store new file name in a marker
calc newfile := zhomedir+"/mysub/helptestfile"
at 50,50
write Generated newfile is:

329

SYSTEM VARIABLES

<|s,newfile|>.
addfile fd; newfile

do xzhomedir2 $$ zreturn feedback
unit xzhomedirlb $$ create a file
file: fd
at 50,50 $3se composed file name directly:
write Adding file:

<|s,zhomedir+"/mysub/helptestfile2"|>
addfile fd; zhomedir+"/mysub/helptestfile2"

do xzhomedir2 $$eport zreturn results
*
unit xzhomedir2 $%&return results
at 50,120
if zreturn
write -addfile- was successful
else
case zreturn
7
write duplicate file name
11
write permission denied
endcase
endif
SeeAlso:

File Name Specification (p. 286)

Judging System Variables
The system variables listed below are set when a user's response is judged at an -arrow-.

The user's input is available as the system marker vadablewm, and any portion of the input that hiasen
selected with the mouse is available as the system marker vaidalde/sel.

These variables are TRUE (-1) if no errors were found, FALSE (0) if the condition was not satisfied:

zcaps no capitalization errors
zentire every required word is present
zextra no extra words in the response
zorder word order is correct

zspell no misspelled words

This variablezjudged, gives the current status of the judgment of the user's response:
zjudged -1 response judged "ok"
0 response judged "wrong"
1 response judged "no"
2 no judgment yet
These variables give relevant counts:

zanscnt # of response-command that was matched

330

OTHER SYSTEM VARIABLES

zntries # attempts made at the current -arrow-
zjcount # characters in the response

zwcount # words in the response

zopcent # of operations (+-*/) in the response
zvarcnt # number of defined variables in response

Examples:
The systenvariablezanscnt gives the position (1st, 2nd, etc.) of thesponse-handling commartkat was

matched by the user's response. The commands that incameantare -answer-, -wrong-, -ansv-, -wrongv-,
-ok-, -no-, -exact-, and -exactw-. If no match is fourahscntis 0.

unit xzanscnt

at 50,50

write Name a farm animal

arrow 50,100

answer [cow bull heifer steer calf]

answer [pony horse mare stallion]

answer [pig piglet boar sow]

answer [sheep ewe]

endarrow

write \zanscnt\\ moo \ neigh \ oink \ baa

*

The systenvariablezntries gives the number of attempts the user hesle atthe curent arrow. Inthis
example, if the second try is not correct, the answer is given and the program continues.

unit xzntries
at 50,50
write How many years are in a century?
arrow 50,100
ansv 100
. write Very Good!
if zntries=2
write There are 100 years in a century.
. judge quit $$ force past the endarrow
endif
endarrow
at 50,200
write after the -endarrow-

*

The system variableopcnt gives the number of arithmetic operations in the usesigonse at an -arrow-. In
this example, if the user responds "3*7", the -ansv- willhia#chedbut zopcnt is 1, so the messagdll be
given and the response marked "no".

unit xzopcnt
at 50,50
write Whatis3x77?
arrow 100,100
ansv 21
if zopent =0

write You must not use any
arithmetic operators.

331

SYSTEM VARIABLES

judge no
endif
endarrow
SeeAlso:
judge Changing the Judgment (p. 182)

Basic Judging Commands (}59)
zarrovm Markers at an -arrow- (p. 256)
zarrowsel Selected Text at an -arrogp. 258)

zreturn: The Status Variable

For certain commandshe systemvariablezreturn reports whether onot acommandwas successful. If the
commandwas successfuireturn is TRUE (-1). If acommand failedzreturn gives a diagnostiocumber
telling how the command failed.

A zreturn value isprovidedfor commandshat handlenumericalinput from the useandfor file operations.
The interpretation ofreturn values for numerical input from the user -compute-, -answrgngv-) is covered
in the example below.

A detailed discussion afreturn for file operations addfile-, setfile-, delfile-, -datain-, -dataout-, -reset-, -xin-
and -xout-) is with the file operations discussion. Here is a summary of the values:

all okay

illegal file variable (should not happen)

file not open (no preceding setfile or addfile)

file not found

file improper type

file code-word error

duplicate file name (file already exists)

file quotaexceeded

catchall error

file directory full

permission denied

file in use (cannot be deleted)

directory not empty (directory cannot be deleted)
-dataout- out of range (not at end of file)

file is currently reserved

illegal character read with -datain-

user canceled making a selection in a file dialog box
window not wide enough for a file dialog box

not enough memory to create a file dialog box

file operation not supported (e.g. QuickTime not installed)
trying to bring up file dialog box in background window

Y Y ST T T T TR RN '
PO OWONOURARWNROO®NDDOAWNR

The file operatiorereturn is complemented by the system variatbietinf (return information).

Example:
unit xComputeZreturn
f: value
arrow 50,50

332

OTHER SYSTEM VARIABLES

compute value

ok zreturn $$ -1 iIFRUE
no
do errors $3ell what is wrong
endarrow
*
unit errors $9values for -compute-, -ansv-, and -wrongv-
write \zreturn

\-1 valid expression, everything okay

\O zopcnt > 0 with -specs noops- in effect
\1 illegal character

\2 decimal point error (such as 3...5)

\3 currently unused

\4 currently unused

\5 error in form (such as 34+)

\6 missing left parenthesis

\7 unrecognized variable name

\8 illegal function argument (such as sqrt -1))
\9 missing right parenthesis

\10 zvarcnt > 0 with -specs novars- in effect
\11 invalid assignment (:=)

More detailed comments about some ofzteturn values for numerical input:
zreturn = Q The userentered arexpression such as "2+5*8", but the authad specifiedthat no arithmetic

operations -specs noops-) were allowed. The only legal response is a single number or variablegbusane
-3 or sin(0.3).

zreturn = 1 The expression includes a character that is illegal in an arithmetic statement, such as \ or %.
zreturn = 10 The userentered arexpression thaincludes a variablebut the authothad specifiedthat no
variables -specs novars-) were allowed. The only legal response inchlgesxplicit numbers or functions of
numbers, such as "5 + sin(45)".

zreturn = 11 Unless the author explicitly specifies that assignments may be included -specs okassigse}, the
cannot use the symbol ";=" in his or her response.

SeeAlso:
File /0O Errors (p. 287)
zretinf Number of Elements Read @06)
specs Specifying Special Options (p. 169)

zkey: Last User Input
The system variablekey gives the last user input, from the keyset or from the mouse.

Although youcanuse or display the value pkey (as shown in the Examplegkey is usuallycomparedwith
azk function, as in

write \zkey=zk(Q)\ You pressed a Q! \\

333

SYSTEM VARIABLES

Selecting a menu item that was created with a -menu- command does not change thezakadye Selecting a
menu item that was automaticalijgnerated by cT doesusezkey to change. These meiti@ms generate a
"next" keypress, so thakkey =zk(next):

(Next Page)
(Proceed)
(Enter Response)

The menu item "(Back)" generates a "back" keypress, sakiegt= zk(back)

When amouse input isreceived,the actualposition is stored inztouchx and ztouchy, while zkey =
zk(some-touch-inpiit

Keep in mind thazkey only holds onenput. If theuser touches (mouse clicks)pasition andthen presses
ENTER to continue, the coordinates of the touch position are lost.

Example:

unit xzkey

at 50,50

write Press a key.

pause

at 80,80

write The numeric value of the key

you pressed is <|s, zkey|>.

SeeAlso:

The Keyname Function: zk() (p. 204)

pause NMbuse Inputs (p. 126)

Mouse Status (p. 325)

Moving between Main Units (p. 237)

zdevice: Last Input Device

The system variabledeviceidentifies thesource ofthe last usemput. Currently, the only inpudevices are
the keyset and the mouse.

zdevice =0 $Xeyset input
zdevice =1 $$nouse input

Example:
unit xzdevice
at 50,50
write Press a key or click the left mouse button.
pause keys = touch,all
at 80,80
write zkey = <|s, zkey|>
zdevice = <|s,zdevice|>
ztouchx,ztouchy = <|s,ztouchx|>, <|s,ztouchy|>
if zdevice=1 $$how mouse position

at ztouchx,ztouchy

334

OTHER SYSTEM VARIABLES

circle 20
endif
SeeAlso:
zkey Last User Input (p- 333)
The Keyname Function: zk() (p. 204)

zclock: Finding Time Spent

The system variableclock is used to calculate elapsed time. It is measuregdondsand is accurate tabout
.01 seconds.

Example:
unit xzclock
f. start, finish
at 60,40
write What is 15 times 15 ?
calc start := zclock 3 save starting value
arrow 100,100
ansv 15*15
wrongv 15*15,5%
write You're within 5%.
endarrow
calc finish := zclock
at 60,150
write You took <| s, finish-start |> seconds.

*

Time and Date

The systemmarker variablesztime and zdate give the current time (hour:minute:second)and date
(month/day/year).

ztime is "hour:minute:second”
zdateis "month/day/year" (January 1, 2000 will be 01/01/00)

The numeric systenvariable zday gives thecurrentJulian date in total seconds measureflom 00:00:00

Coordinated Universal Time, Jan. 1, 1970. However, since PCs and Macintoshes usually don't know what time

zone they are in (unlike most Unix systems), the Julian date may be skewed by tinti#feoer@es.Since one
typically uses thelifferencebetweentwo Juliandates onthe same computer, this skewing typicatlgesn't
really matter.

zday gives the numeric Julian date
Example:

unit xtime

m: time, date
i: hour, minute, second

335

SYSTEM VARIABLES

i: month, day, year

calc time := ztime $$ save current values
date := zdate

at 10,10

write The time is <|s,time|>.

The date is <|s,date|>.
<|s,zday/(365*24*60*60)|> years have
gone by since 1/1/70.

do xClock(time; hour, minute, second)

at 10,100

write The time is <|s,hour+12*(hour > 12)|>:
write \minute < 10 \0\\

write <|s,minute|>:

write \second < 10 \0\

show second

write \hour > 12 \ PM.\ AM.

do xDate(date; month, day, year)

at 10,130

write The date is

write \month -2\January\February\March\April

\May\June\July\August\September
\October\November\December

write <|s,day|>, 19<|s,year|>.

*

unit xClock(hrminsec; hr, min, sec)

* From hrminsec in ztime format, extract numeric hr, min, sec.
m: hrminsec, colon
i: hr, min, sec

calc hr :=znumeric(hrminsec)
colon := zsearch(hrminsec,":")
min := znumeric(zextent(colon,zend(hrminsec)))
colon := zsearch(zextent(znext(colon),zend(hrminsec)),":")
sec ;= znumeric(zextent(colon,zend(hrminsec)))

*

unit xDate(monthdayyear; month, day, year)

* From monthdayyear in zdate format, extract numeric month, day, year.
m: monthdayyear, slash
i: month, day, year

calc month := znumeric(monthdayyear)
slash := zsearch(monthdayyear,"/")
day := znumeric(zextent(slash,zend(monthdayyear)))
slash := zsearch(zextent(znext(slash),zend(monthdayyear)),"/")
year := znumeric(zextent(slash,zend(monthdayyear)))

Unit Markers zcurrentu & zmainu

The systenvariablezcurrentu is a markercontaining the name of thenit that is beingexecuted athis
moment.

The system variablemainu is a marker containing the name of the current main unit; that is, the first unit in
the program, or a unit reached by -jump-, -next-, or -back-.

336

OTHER SYSTEM VARIABLES

zclipboard: Clipboard Contents
The system variableclipboard is a marker bracketing the text that is currently on the system clipboard.

show zclipboard $$ show current contents of system clipboard
calc zclipboard := "Hello there!" $$ put this text on clipboard

Assigning some text teclipboard is essentially equivalent to doing a cut or copy operation.

zmachine: Current Machine

The systemvariablezmachine is a markercontaining the name of the type of computer the program is
currently running on, according to this list:

"macintosh”
PC running Windows: "windows"
Unix: "pmax" (DECStation 3100), "sparc”, "sun3", "vax", "rt"

SeeAlso:
sysinfo Get System Information (p. 319)

337

SYSTEM VARIABLES

1=, 201

$$, 11

$$ comments 11

and, 201

$diff$, 206

$divr$, 200

$divt$, 200

Ish, 206

$mask$, 206

not, 201

or, 201

rsh, 206

$union$, 206

$window, 34

&, 201

(Enter Response) 169

(Next Page) 237

* 11

* comments, 11

|, 201

abs(x), 203

addfile, 289

algebra, 167

algebraic
evaluating responses 167

alloc, 212

allow, 65, 177
answer erasing 177
arrow display, 178
blank responses 179
buttonfont, 69
degree 70
display, 67
editdraw, 68
erase 66
fuzzyeq, 71
objdelete, 69
objects, 69
optionmenu, 69
screen updating 68
summary, 65, 177
supsubadjust, 70

alog(x), 203

alphabetization example 278

alternate fonts, 43, 46

and (logical), 201

and (of bits), 206

animations, 98, 100
with get and put, 100

anserase 177

ansv, 163
zreturn values, 332

338

Index

answer, 162
algebraic, 167
capitalization, 169

-contingent commands 159, 162
-contingent erasing 159, 177

markup, 169

modify defaults, 169
numerical, 163
optional words, 169

out-of-order words, 169
reserved words for status 330

spelling, 169

unexpected 164

word or phrase, 162
append, 259
arc

relative, 114

syntax for, 53
arccos(x), 202
arccot(x), 202
arccsc(x), 202
arcsec(x) 202
arcsin(x), 202
arctan(x), 202
area

erase 58

fill , 56

move, 98

pattern, 61
arguments

of zk(x), 204

passing 223

arithmetic operations, 200

array
assign values to 210
length, 213
pass-by-address 208
sort, 213
special indices 208
using, 208
zero, 211

arrays, 208

arrow, 159
blank responses 179
display of, 178
initializations, 173
modifying defaults , 169
number of tries, 330
selected text 258
with marker variable,

aspect ratio, 37

assign 200

256

assignment
at an arrow, 169
symbol, 200
to a variable, 200
assignments 200
asterisk
comments 11
at, 34
current screen position 34, 323
implicit after response, 159
with no margin, 35
with -text-, 39
atnm, 35
author variables, 198
axes 104
labels, 106
lengths, 104
marks along, 106
not shown, 105
back, 239
background color, 77
backslash
in conditional commands 18
with -text-, 39
bar graphs, 110
bar width, 110
bases
number, 191
beep, 122
binaries, 16
binary
constants 191
display, 49
bit
count, 206
manipulations, 206
bitcnt(x), 206
blank lines, 11
blanks
allow/inhibit, 179
block, 212
bmp, 14
bold
after -answer-, 169
text, 39
boolean, 201
boolean operators 201
bounds, 105
box, 55
braces
used with -answer-, 162
used with <calc-, 200
branching commands 237
bugs in cT, 27

INDEX

button, 142
buttonfont
inhibit, 69
byte, 191
bytes
file 1/0, 301, 303
calc, 200
into a marker variable, 249
calculation
introduction, 187
calendar date 335
call-by-address, 224
call-by-value, 224
calling arrays, 208
cancel 154
arrow defaults, 169
back, 239
file descriptor, 291, 293
iarrow, 173
ijudge, 175
imain, 232
next, 237
capitalization at an arrow, 169
carriage return, 42
embedded in a string 249
case 216
character
add to string, 259
assign to a marker 249
coordinates, 38
count at an -arrow-, 179, 330
creation of, 43, 46
sets 43, 46
strings, 246
characters
add to string, 259
circle, 53
arcs of 53
dashed 53
relative, 114
circleb, 53
clear
file descriptor, 291
input buffer, 135
specs options 169
click, 126
mouse 126, 132, 325
clip, 63
closing a file 291
clrkey, 135
coarse 38
coarse grid, 38
code
from another file, 243

339

SYSTEM VARIABLES

color, 77
closest from existing palettes 88
fallback slots, 81
get values 86
introduction, 71
newpal, 81
palette, 81
status, 326
window, 79
color images 91
color menu, 13
colors
number of, 86
columns of numbers 48
combin(x,y), 203

combining logical expressions 201

command
conditional, 18
graphing, 102
indent, 39, 162, 181, 195, 215, 216
relative coordinates 112
response handling 124
syntax, 200, 201
commands
animation, 98
calculating, 187
drawing , 52
graphics, 32
looping, 215
modify defaults , 169
mouse input 125
random, 221
screen description 34
sequencing 237
single key input 125
text, 39
comment, 11
comp(x), 206
compare
markers, 252
complement, 206
compute, 165

computing with marker variables,

254

on a string, 254

with one tag, 165

with two tags, 254

zreturn values, 332
conditional commands 18
constant, 191
constants

floating-point, 191

integer, 191
continued lines 52

340

convert
integer to string, 265
string to integer, 265
coordinates
absolute, 34
character, 38
coarse 38
fine, 35
graphing, 102
log scales 108
mouse 325
polar, 109
relative, 112
scaled 37
screen 34
touch, 325
copy
string to a new string 266
cos(x), 202
cosh(x), 202

cot(x), 202
CR, 50
csc(x), 202

current screen position 323
current screen size 321
cursor, 62
editing, 159
mouse 62
data
about mouse position 325
about user input, 330
input/output, 285, 289
numerical input errors, 332
read from file, 294, 297
write to file, 298, 301
datain, 294
marker variables, 254
text, 254
dataout, 298
datastream, 23

date, 335

debugging, 20

defaults
arrow, 169
erase 66
graphics, 32
graphing, 103
judging, 169

main unit, 232

margins, 34

modify, 65, 169, 177

modifying unit, 232

screen erase 232
define, 193

global variables, 193
groups, 193
local variables, 195
markers, 248
student:, 198
summary, 190
user:, 198
DEG, 191, 202
degree 202
inhibit, 70
delete file, 293
delfile, 293
delimiter
conditional, 18
text, 39
delta, 110
device sending input 334
dialog, 144
dialog box, 144
diff (of bits), 206

differences from other languages 17

dimensions
screen 35, 321

directory
select 294

disable, 132

disk, 57

display
answer markup, 169
arrow, 178
binary, 49
characters, 94
clipping, 63

columns, 48

hexadecimal 49

inhibit, 67

inhibit first display, 66
marker contents, 250
octal, 49

reshaping, 37

size 113, 321, 324

text, 39, 41
variables, 47, 50
divide
floating, 200
integer, 200
divr, 200
divt, 200
do, 224

-eraseu- unit 175
-iarrow- unit, 173
-ijudge- unit, 175
-imain- unit, 232
-menu- unit, 136

passing markers 253
dollar signs, 11
dot, 53
drag, 126
drag (mouse) 126
draw, 52
continued lines 52
-inhibit startdraw-, 66
drawing commands , 52
dynamic arrays, 212
edit, 149
edit files, 155
edit menu, 11
edit panel, 149
editdraw
inhibit, 68
ellipse, 114
else 215
elseif, 215
embed 50
embedded variables 50
empty a file, 306
enable 132
endarrow, 159
endcase 216
endif, 215
endloop, 218
end-of-line comments 11
ENTER, 237
equal to, 201
equality
almost equal 201
logical, 201
equation judging, 167
erase 58
default, 232
inhibit, 66
mode, 60
eraseuy 175
error returns
file operations, 287, 306
numerical input, 332
evaluate
algebraic responses 167

numerical responses 163, 165

word responses 162
exact, 181
exactw, 181
example program 5
exclusive or (of bits) 206
execute 241
executing a new program 241
execution

of a program, 241

INDEX

341

SYSTEM VARIABLES

quitting, 237
exit
from a program, 237
from a unit, 234
exp(x), 203
exponentiation, 200
ext, 204
external device 126, 204, 334
factorial(x), 203
fallback color slots, 81
FALSE, 191, 201, 203
file
changing position within, 306
close 291
create, 289
delete, 293
descriptor definition, 191
extension 241, 286, 289
I/O examples 308
introduction, 285
library , 243
names 286
read a line 297
read bytes from, 301
read data from, 294, 297
select directory, 294
set to 291
write bytes to, 303
write data to, 298, 301
zreturn value, 332
file editor, 155
file 11O, 285
with string variables, 254
file menu, 11
file name, 329
file names 286
file path, 329
fill, 56
area, 56
circle, 57
pattern, 61
fine, 35
fixed format variable display, 48
flag
changed marker, 264, 266
flags
modify defaults, 65, 177
float, 191
floating point
constants 191
range of 191
focus, 153
folder
select 294

342

font, 43
generic names 327
typewriter, 327
font menu, 13
fontp, 46
for loops, 218
forcing a keypress 133
foreground color, 77
frac(x), 203
frames, 55
frequency of sound 122
frequency of tone 122
function keys, 186
functions, 200
arrays, 208
combin, 203
factorial, 203
gamma, 203
hyperbolic, 202
keynames 204
markers, 264
math, 203
modulo, 203
trig, 202
zk(x), 204
fuzzy zero 201
inhibit, 71
fuzzyeq
inhibit, 71
gamma(x), 203
garrow, 102
gat, 102
gatnm, 102
gbox, 102
gbutton, 102, 142
gcircle, 102
gcircleb, 102
gclip, 63
gdisk, 102
gdot, 102
gdraw, 102
gedit, 102, 149
generic font names 327
gerase 102
get, 89, 91
gethsv, 86
getkey, 134
getrgb, 86
getserv, 316
gfill, 102
gget, 102
global variables, 193
with local variables, 196
gmove, 102

gorigin, 103
gput, 102
graph
mouse coordinates 325
graphics
defaults, 32
dot pictures, 53, 93
drawings, 52
fast updates 68
graphs, 102
icons, 94
introduction, 32
moving of, 98
position, 34, 35, 323
system variables 321
window size 34
graphics editing, 10
graphing
axes 104, 105
bar width, 110
bars
vertical & horizontal, 110
commands 102
defaults, 103
histograms, 110
labels, 106
labels for log scales 108
log scales 108
origin, 103
polar coordinates 109
scales 105
semi-log scales 108
tick marks, 106
graphing commands 102
gray areas 61
greater than, 201
grid
coarse 38
fine, 35
group, 193
gslider, 102, 146
gtext, 102
gvector, 102
halt program, 241
hbar, 110
height
of video, 327
hexadecimal
constants 191
display, 49
hidden units, 11
histograms, 110
home directory, 329
horizontal bars, 110

INDEX

hot text, 153
hsv, 84
hue, 84
hyperbolic functions, 202
hypertext, 153
iarrow, 173
Icon Maker, 95
icon.t, 96
icons, 93
Macintosh, 95
PC & Unix, 96
ID of user, 329
IEU, 227
if, 215
ifmatch, 181
ignorable words, 162
ijudge, 175
image height 91
image width, 91
images 88
images & files 91
imain, 232
indenting, 11
index
calculations, 187
inhibit, 65, 177
answer erasing 177
answer markup, 169
arrow display, 178
blank responses 179
buttonfont, 69
degree 70
display, 67
draw, 66
erase 66
first display, 66
fuzzyeq, 71
objdelete, 69
objects, 68, 69
optionmenu, 69
screen updating 68
startdraw, 66
summary, 65, 177
supsubadjust, 70
initial entry unit, 227
initializations
arrow, 173
judging, 175
unit, 232
initialize
arrays to zero, 211
input
algebraic, 167
alphanumeric, 159

343

SYSTEM VARIABLES

buffer
get one key 134
clear buffer, 135
from a file, 294, 297
keyset 159
last device 334
last key, 333
mouse 126
non-keyset 132
numerical, 165
single key, 125
input handling, 124
overview, 124
input/output, 285
error returns, 287, 306
insert file, 11
int(x), 203
integer, 191
constants 191
convert to string, 265
integer divide, 200
integers
range of 191
intersection, 201
intersection (logical), 201
inverse mode 60

italic
after -answer-, 169
text, 39

iteration, 218
iterative loops, 218
judge, 182
changing the judgment 182
initializations, 175
Judging
overview, 158
jump, 239
jumpout, 241
keynames 204
keypress
current, 333
forcing, 133
single keys 125
value of, 204
keys=, 125
keyset, 184
keywords, 318
labels on graphs 106
labelx, 106
labely, 106
languages 184
left shift, 206
length, 213
arrow input, 330

344

of axes 104
of video, 327
pass-by-address arrays 208
screen size 321

length of a string, 269

less than 201

library files, 243

line
with arrowhead, 54

line thickness 62

lines
blank, 11
drawing, 52

In(x), 203

local variables, 195
with global variables, 196

log
base 10 203
natural, 203

log graphs 108

log(x), 203

logical comparisons with markers
252

logical expressions 201

loop, 218

Iscalex, 108

Iscaley, 108

Ish, 206

main unit
and -enable touch; 132
initializations, 232
introduction, 228
when window is reshaped 228
with -jump, 239

margin
-atnm- no margin, 35
default, 34, 232
set with -at-, 34
with -arrow-, 159
with -text-, 39
with -write-, 41

markers, 246
appending characters 259
assigning value to 249
at an arrow, 256
base string 265
basic operations 248
before the first character, 276
changed marker flag 264, 266
combine marker regions 267
commands 259
convert integer to string, 265
convert string to integer, 265
copy to a new string 266

creating text, 248
defining, 248
display contents 250
embedded 251
embedded CR 249
embedded in text 250
embedded quote 249
embedded TAB 249
equivalent markers, 273, 274
example
alphabetize a list 278
counting vowels 279
parametric equations, 282
plot two functions, 281
reverse a list 277
examples 277
extract number, 272
file /O, 254
first character, 267
functions, 264
has style 267
hot info, 268
icon code 268
icon file, 269
introduction, 246
last character, 269
length, 269
location, 270
logical comparisons 252
next character, 270
next line, 271
next word, 271
number of icons 272
pass-by-address 253
pass-by-value 253
position, 270
previous character, 274
replacing characters 259
search for a string 275
selection at an arrow 258
set, 276
sticky, 261
style, 262
styles in text 250
with compute, 254
marks along axes 106
markup
answer, 169
markx, 106
marky, 106
mask, 206
math functions, 203
mathematical operators
in responses 167, 198, 330, 332

INDEX

menu, 136
like -do-, 140
ordering of items, 138
passing a parameter 139, 141
simple formats, 136
summary of formats, 136
titles with variables, 141
transfer of control, 140
merge, 193
merge,global: 196
merge,group:, 193
minus, 200
mod(x,y), 203
mode, 60
erase 60
inverse, 60
rewrite, 60
write, 60
xor, 60
zmode, 324
modify
defaults, 65, 177
judging defaults, 169
mouse 126
click, 126
coordinates, 325
cursor, 62
drag, 126
enable 132
input, 126
rubberband, 126
system variables 321
mouse inputs 125
move, 98
move a block of variables 212
moving ahead 237
name
path, 329
user, 329
natural log, 203
negative indices on arrays 208
nested inputs 159
new line, 42
newline, 42
newpal, 81
next, 237
no, 164
nomark, 169
non-English text, 184
nookno, 169
noops, 169
noorder, 169
nospell, 169
not (logical), 201

345

SYSTEM VARIABLES

not equal, 201

not(x), 201

novars, 169

number bases 191

numerical responses 163, 165
numout, 301

objdelete
inhibit, 69
objects
inhibit, 69
octal
constants 191
display, 49
ok, 164
okassign 169
okcaps, 169

okextra, 169
okorder, 169
okspell, 169
operators, 200
arrays, 208
operators in responses 169
optional words in -answer-, 162, 169
optionmenu
inhibit, 69
or (logical), 201
or (of bits), 206
origin
for rotations, 113
graphing, 103
screen coordinates 32
other languages
differences, 17
outcase 216
outif, 215
outloop, 218
out-of-order words in -answer- 169
output
to a file, 298, 301
outunit, 234

Overview
input handling, 124
judging, 158
page
next, 237
previous, 239
palette, 81

paper coordinates 37
parametric equations example 282
pass-by-address
arrays, 208
to a subroutine, 224
to a unit, 223
pass-by-value

346

to a unit, 223
path names 329
pattern, 61
area, 56
circle, 57
creating, 93
pause 125
enable input, 132
for keyset input, 125
for mouse input, 126
timed, 125
pause inputs 125
permutations, 221
phrase inputs 159
Pl, 191, 202
pict, 14
picture icons, 93
pixel data display, 91
plot, 94
plot two functions example 281
plotting a graph, 102

plus, 200
polar, 109
polar coordinates, 109
polygon
erase 58
fill , 56
polyline, 52

portability , 21
porting programs, 21
position
in a file, 306
on the screen 323
ppm, 14
precise labels on graph 106
precision
floating-point, 191
integers, 191
numbers near zerg 201
preferences 13
press, 133
previous page 239
print, 14
printing, 14
program
exit from, 237
starting a new, 241
program example, 5
pull-down menus, 136
punc, 169
punctuation
of responses 162, 169
purpose of cT, 4
put, 89, 91

q tag
back, 239
iarrow, 173
ijudge, 175
imain, 232
next, 237
quit execution, 237
quit running, 241
quote, 50
guote marks
embedded in a string 249
radians, 202
random
values, 221
random access files 285
random values 221
randu, 221
rarrow, 112
rat, 112
rathm, 112
rbox, 112
rbutton, 112, 142
rcircle, 112, 114
rcircleb, 112, 114
rclip, 63
rdisk, 112
rdot, 112
rdraw, 112
readln, 297
real numbers, 191
rectangles 55
recursion, 195
redit, 112, 149
relative
origin, 113
relative graphics commands 112
relocatable commands 112
reloop, 218
repeat, 218
replace, 259
rerase, 112
rescale 37
display, 37
part of a display, 113
reset, 306
reshape
display, 37
status, 324
response
-contingent commands 159
-contingent erasing 159, 177
response handling commands
judging commands 124
responses

INDEX

actions after judging, 181
algebraic, 167
blank, 179
changing the judgment 182
erasing of 175
exact 181
forcing a keypress 133
numerical, 163, 165
operators in, 169
punctuation in, 169
single key, 125, 126, 134
unexpected 164
word or phrase, 162
restoring a marker, 276
restoring the screen 89
RETURN, 237
reverse-list example 277
review, 239
rewrite mode, 60
rfill , 112
rgb, 84
rget, 112
right shift, 206
rmove, 112
rorigin, 113
rotate, 113
round(x), 203
roundoff errors, 201
rput, 112
rsh, 206
rslider, 112, 146
rtext, 112, 115
rubberband, 126
rubberband (mouse) 126
rvector, 112
sample programs 28
sanserif, 327
saturation, 84
saving the screen 89
scaled coordinates 102, 112
scalex 105
scaley, 105
scientific notation, 191
screen
defaults, 32
erase 58
erasure, 66, 239
position, 34, 35, 323
reshape status 324
reshaping, 37
size, 35
actual, 321
current, 321
screen description 34

347

SYSTEM VARIABLES

scrollbar, 146
search meny 13
sec(x) 202
semi-log graphs 108
sentence inputs 159
sequencing commands 237
sequential files 285, 289
serial, 309
serial port, 117, 309
serif, 327
server, 312
set, 210
set file descriptor, 291
setdir, 294
setfile, 291
setting a marker, 276
show, 47
marker contents, 250
string, 250
showb, 49
showh, 49
showo, 49
showt, 48
side-effect changed marker flag 264,
266
sign(x), 203
sin(x), 202
single key inputs 125
sinh(x), 202
size, 113
of display, 321
of text, 43, 46, 115
skip, 52
slider, 146
socket, 313
sockets 311
solid circle, 57
solid-color areas 56
sort, 213
array), 213
strings, 278
sound, 122
source format, 23
specs 169
sqrt(x), 203
square root, 203
squares 55
startdraw, 66
step, 20
sticky, 261
stop program, 241
stopping a program, 241
string, 248

strings-see "markers", 246

348

student
style, 262
with string variables, 262
style menuy 13
subroutine
calling, 224
calling an array, 208
subscripts, 43
superscipts 43
supsubadjust
inhibit, 70
switch file, 11
synonyms, 162
syntax
calculations, 200
syntax level 27
sysinfo _ TC "sysinfo
Get System Information'.i.sysinfo " \\|
_, 319
system literals and constants 320
system variables 318
calculations, 332
color status, 326
current mode, 324
file i/o, 287, 306
judging, 330
mouse status 325
reshape status 324
screen position 323
screen size 321
timing, 335
window forward, 327
zclipboard, 337
zdate, 335
zday, 335
zmachine, 337
ztime, 335
TAB, 50
embedded in a string 249
tan(x), 202
tanh(x), 202
text, 39
changing size 115
display of, 39, 41
text display , 39
text panel, 149
textured areas 61
thick, 62
thickness, 62
tick marks, 106
timed pause 125
times, 200
timeup, 125, 204
timing, 335

variables 198

4

INDEX

tolerance summary, 190, 191
in -ansv-, 163 system 287, 306, 318, 321, 323, 324, 325,
in logical expressions 201 326, 327, 330, 332, 335, 336, 337
tone, 122 user, 198
touch, 126 vbar, 110
enable, 132 vector, 54
keyword, 204 vertical bars, 110
touch command 129 video, 117
touch regions 129 video height 327
transportability , 21 video length 327
tries at an -arrow-, 330 video time indicator, 327
trigonometric functions, 202 video width, 327
TRUE, 191, 201, 203 voiding the stack 239
typeface, 43, 46 volume of sound 122
typing function keys, 186 volume of tong 122
typing non-English text, 184 vowel-counting example 279
union, 201 vplay, 120
union (logical), 201 vset, 119
union (of bits), 206 vshow, 121
unit, 223 vstep, 121
before first, 227 wcolor, 79
do-ing a 224 while loops, 218
IEU, 227 width
introduction, 223 of video, 327
modifying main units, 232 window
next, 237 color, 79
units main unit on reshape 228
hidden, 11 zforeground, 327
until, 218 window menu, 13
update window size 34
screen 68 window title, 34
use, 243 word
user input count at an -arrow-, 330
most recent device 334 word inputs, 159
most recent key 333 write, 41
user name 329 mode, 60
user variables 198 wrong, 162
using code from another file 243 wrongv, 163
value wtitle, 34
colors, 84 xin, 301
variables, 190 xor mode, 60
author, 198 xout, 303
combining groups of variables 193 zaltered(m), 264
combining local and global 196 zanscnt, 330
display of, 47, 49 zarrowm, 256
embedded in text 50 zarrowsel, 258
formatted display of, 48 zbase(m) 265
global, 193 zbutton, 142
graphics, 321 zcaps 330
local, 195 zchar(m), 265
merge,global: 196 zclipboard, 337
merge,group:, 193 zclock, 335
mouse 321 zcode(m), 265
random, 221 zcolorb, 77, 326

349

SYSTEM VARIABLES

zcolorf, 77, 326
zcopy(m), 266
zcurrentdir, 294
zcurrentu, 336
zcursors, 327
zdate, 335
zday, 335
zdblclick, 325
zdefaultb, 77, 326
zdefaultf, 77, 326
zdevice 334
zeditkey, 154
zeditsel 149
zedittext, 149
zeditvis, 149
zeditx, 154
zedity, 154
zempty, 252
zend(m), 266
zentire, 330
zero, 211

an array, 211

values near 201
zextent(m), 267
zextra, 330
zfilename, 329
zfilepath, 329
zfirst(m), 267
zfixed, 327
zforeground, 327
zgtouchx, 325
zgtouchy, 325
zhasstyle(m,style) 267
zheight, 321
zhomedir, 329
zhotinfo, 153
zhotinfo(m), 268
zhotsel 153
zhsvn, 88
ziconcode(m,N) 268
ziconfile(m,N), 269
zicons, 327
zjcount, 330
zjudged, 330
zk(x), 204
zkey, 333
zks(x), 204
zlast(m), 269
zleftdown, 325
zlength(array), 213
zlength(m), 269
zlocate(m), 270
zmachine, 337
zmode, 324

350

zncolors, 86, 326
znext(m), 270
znextline(m), 271
znextword(m), 271
znicons(m), 272
zntries, 330
znumeric(m), 272
zopcnt, 167, 330
zorder, 330
zpatterns, 327
zprecede(m) 273
zprevious(m), 274
zreshape 324
zretinf, 306
zreturn, 332

file operations, 287, 306
summary, 332
the status variable 332

zrgbn, 88
zrightdown, 325
zrtouch, 325
zrtouchy, 325
zsamemark(m), 274
zsans 327
zsearch(m), 275
zserif, 327
zsetmark(m), 276
zsheight(), 89, 91
zslider, 146
zspell, 330
zstart(m), 276
zswidth(), 89, 91
Ztextat, 154
Ztime, 335
ztouchx, 325
ztouchy, 325
zuser, 329

zvalue, 142, 146
zvarcnt, 330
zvheight, 327
zvlength, 327
zvplaying, 327
zvtime, 327
zvwidth, 327
zwcolor, 79, 326
zwcount, 330
zwherex, 323
zwherey, 323
zwidth, 321
zxmax, 321
zxmin, 321
zxpixels, 321
zymax, 321
zymin, 321

INDEX

zypixels, 321

351

